Preliminary Stormwater Calculations

Oregon City Police and Courts

Prepared for: FFA Architecture and Interiors Prepared by: Nathan Patterson Project Engineer: Mark Reuland

March 2019 | KPFF Project #1800230

KPFF'S COMMITMENT TO SUSTAINABILITY

As a member of the US Green Building Council, KPFF is committed to the practice of sustainable design and the use of sustainable materials in our work.

When hardcopy reports are provided by KPFF, they are prepared using recycled and recyclable materials, reflecting KPFF's commitment to using sustainable practices and methods in all of our products.

Oregon City Police and Courts Preliminary Stormwater Calculations

Project Overview

The project consists of constructing the new Oregon City Police and Courts Facility and associated site improvements that will serve as the headquarters for the City's Police Department and Municipal Court. Major site components will include a public parking area, a large secured parking area and a public plaza.

The property is surrounded by residential neighborhoods to the west, north, east and southwest. The site is the current home of an existing single level school building that has received several expansions over the years. The City's planning and building divisions are based out an existing building to remain on the property to the south of the proposed development. North of the existing city building there is an existing parking lot and utility corridor that will largely remain intact. The corridor is a vacated street that contains underground sewer, storm and gas utilities, and overhead power.

Figure 1: Project Location Map

Stormwater Management Methodology

Stormwater management within Oregon City is dictated by the 2015 Stormwater and Grading Design Standards (SGDS). All impervious site areas must be treated and detained to meet these standards. Applicable areas for this site are be roofs, asphalt and concrete pavements, sidewalks, and plazas. Low Impact Development (LID) infiltration facilities are used to the maximum extent possible. There is no storm main in Linn Avenue and the line in the southern parking area is approximately 3-ft deep and drains to the Mud Basin. Per the pre-application meeting, no additional flows shall connect to the Mud Basin. A 12-inch

public storm drain located in an easement through the site is the proposed point of connection for the majority of the site as it is located at the lower end of the site at an approximately depth of 7-ft.

Infiltration

The SGDS defines adequate infiltration to support an infiltration facility as 0.5 inches per hour. A draft geotechnical report performed by PBS Environmental and dated October 16, 2018 identifies a local field-tested infiltration rate of 0.375 inches per hour. The project will still utilize infiltration to the maximum extent possible.

Water Quality Treatment

The SGDS defines the water quality storm that must be treated as 1 inch in a 24 hour period. The City provides a Best Management Practices (BMP) sizing tool that is used to size all vegetated water quality treatment facilities. Where non-vegetated facilities cannot be sited within the northern secure parking area, Contech Stormfilters will be used. These are designed per City of Portland standards as directed by the SGDS. City standard rain gardens and building-side flow through planters are dispersed throughout the site as the primary treatment method. Vegetated facility surface area is determined by the BMP Sizing Tool but may be reduced by 20% if growing media depth is increased by 12-inches. Minimum and proposed sizes of the proposed vegetated facilities are shown in the Proposed Basin Map in Appendix A, and BMP Sizing Tool Report in Appendix B. Contech Stormfilter sizing are shown in the water quality calculation sheets in Appendix B.

Flow Control Requirement – Downstream Analysis

Study of upstream and downstream stormwater basin and infrastructure conditions revealed existing issues in the public conveyance system that crosses the site. In a preliminary discussion with the city, it was noted that one solution would be to demonstrate detention can be provided such that there are no adverse impacts to up or downstream conditions. To perform this analysis, the upstream contributing neighborhood basin 25-year peak runoff flows are used as the baseline in which the developed condition's runoff may not exceed. The developed condition includes the existing upstream basin, and the site pervious and impervious basins. Further design criteria used and the hydrographs of each basin can be found in Appendix E.

While typical site development would be subject to the 10-year storm analysis of pre versus postdevelopment runoff, there are potential conveyance deficiencies in the existing public storm system that warrant use of the 25-year storm to demonstrate adequate conveyance per the SGDS.

Storage calculations indicate that the detention requirement can be met by providing 13,840 cubic feet of underground storage. Stormtech SC-740 chambers with rock storage are proposed. A flow control manhole with tee and 7.9-inch orifice will be installed over the public storm main which will divert flows in excess of the existing conditions to the storage facility located on site. A summary of the storage facility criteria and orificed flow control structure can be found in Appendix E and in stormwater details Appendix C.

Appendix A

Basin Map

TREATMENT ID: MINIMUM SIZE (SF) PROPOSED SIZE (SF): G-01 384 1,567 RG-02 91 318 RG-03 267 167 RG-04 76 261 FTP (A-E) 525 1,193

SHEET NOTES

- 1. PIPE BEDDING AND BACKFILL FOR ALL UTILITIES SHALL BE DONE PER DETAIL X/XX.X.
- -SM MM . PIPE BELUING AND VIEW ------------BONE PER DETAIL X/XX.X. E C M S 44334 E C M S 44334 E C M S 44334 2. STATIONS AND OFFSTS SHOWN ON STRUCTURES ARE SHOWN AT CENTER OF STRUCTURE.

UTILITY KEY NOTES

NOTE DESCRIPTION

DETAIL REF.

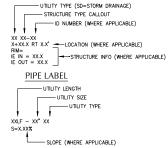
- APPROXIMATELY 6,200 CF UNDERGROUND STORNWATER DETENTION CHAMBERS, SC-740 OR SIMILAR WITH 6" ROCK STORAGE BASE AND COVER 1
- INSTALL 48" FLOW CONTROL MANHOLE WITH ORIFICE CONTROL OVER EXISTING 12" PUBLIC STORM MAIN IN EASEMENT
- 3 96-INCH MANHOLE WITH 13 CONTECH STORMFILTER CARTRIDGES
- 4 SINGLE CARTRIDGE WATER QUALITY CATCH BASIN. MANUFACTURED BY CONTECH (SFCB-1)
- BWW
 INSTALL
 BACKWATER
 VALVE
 AT FOUNDATION
 DRAIN

 CONNECTION
 TO STORM
 SYSTEM.
 FO
 4-INCH PERFORATED FOUNDATION
 DRAIN

 FTP
 FLOW-THROUGH PLANTER PER SITE PLAN
 FLOW-THROUGH PLANTER PER SITE PLAN

UTILITY LABEL LEGEND STRUCTURE LABEL

- RG RAIN GARDEN PER SITE PLAN RD BELOW GRADE ROOF DRAIN CONNECTION TO STORMWATER PLANTER. INSTALL SPLASHPAD.

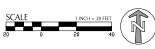

- STM CB RIM 472.73 IE 8" OUT E. 471.5

W Fifth Ave., Suite 2 ortland, OR 97204 O: 503.227.3251 F: 503.274.4681 www.kpff.com

+Interiors FFA Architecture and Interiors, Inc. 520 SW Yamhill Suite 900 Portland OR 97204 Phone: 503.222.1661 Fax: 503.222.1701 www.ffadesign.com

Architecture

<u>S</u>	STRUCTURE TYPE				
CALLOUT	DESCRIPTION	DETAIL REF.			
AD	AREA DRAIN				
CB	CATCH BASIN				
CO	CLEANOUT TO GRADE				
DI	DITCH INLET				
FCMH	FLOW CONTROL MANHOLE				
FD	FOUNDATION DRAINAGE				
MH	MANHOLE				
OF	OUTFALL				
ov	OVERFLOW INLET				
STUB	STUB				
TD	TRENCH DRAIN				


SURVEY MARK 1-3/ DISK. REFERENCE MC DLLC. CORNER NO. 3 - STM CB RIM 473.68 IE 6" OUT S. 472.68

WILLIAMS STI

--- STM CB RIM 473.34 IE 6" IN N. 472. IE 8" CUT S. 47

BASIN LEGEND:	DRAINS TO:
BASIN A 2901 SF	WQCB-01
BASIN B 25293 SF	CB-02/ WQMH-01
BASIN C 16627 SF	CB-01/ WQMH-01
BASIN D 5056 SF	RG-04
BASIN E 4460 SF	RG-03
BASIN F 6637 SF	RG-03
BASIN G 35020 SF	FTP (A-E)
BASIN H 6064 SF	RG-02
BASIN I 14885 SF	RG-01
BASIN J 10685 SF	RG-01
TOTAL SITE IMPERVIOUS:	

ROBERT LIBKE PUBLIC SAFETY BUILDING

OREGON CITY POLICE DEPARTMENT

1232 LINN AVE OREGON CITY, OR 97045

_	APPROVED:	MGR
5	DRAWN:	NLP
	DATE:	March 29, 2019
3	PROJECT NUMBER:	1800230

STORM DRAINAGE PLAN

Appendix B

Stormwater Treatment Calculations

WES BMP Sizing Software Version 1.6.0.2, May 2018

WES BMP Sizing Report

Project Information

Project Name	Oregon City Police Department
Project Type	PublicFacilities
Location	
Stormwater Management Area	3045
Project Applicant	Oregon City Police Department
Jurisdiction	CCSD1NCSA

Drainage Management Area

Name	Area (sq-ft)	Pre-Project Cover	Post-Project Cover	DMA Soil Type	BMP
BASIN D	5,056	Forested	ConventionalCo ncrete	С	RG-04
BASIN C	16,627	Forested	ConventionalCo ncrete	С	DETENTION-C HAMBERS
BASIN B	25,293	Forested	ConventionalCo ncrete	С	DETENTION-C HAMBERS
BASIN A	2,901	Forested	ConventionalCo ncrete	С	DETENTION-C HAMBERS
BASIN E	4,460	Forested	ConventionalCo ncrete	С	RG-03
BASIN F	6,637	Forested	ConventionalCo ncrete	С	RG-03
BASIN G	35,020	Forested	ConventionalCo ncrete	С	FTP-A-B-C-D-E
BASIN H	6,064	Forested	ConventionalCo ncrete	С	RG-02
BASIN I	14,885	Forested	ConventionalCo ncrete	С	RG-01
BASIN J	10,685	Forested	ConventionalCo ncrete	С	RG-01

LID Facility Sizing Details

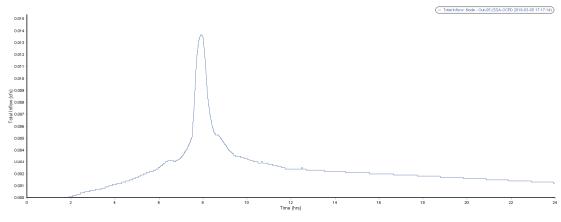
LID ID	Design Criteria	ВМР Туре		Minimum Area (sq-ft)		Orifice Diameter (in)
RG-03	WaterQuality	Rain Garden - Filtration	C1	166.5	367.0	0.5

RG-01	WaterQuality	Rain Garden - Filtration	C1	383.6	1,567.0	0.8
RG-02		Rain Garden - Filtration	C1	91.0	318.0	0.4
RG-04		Rain Garden - Filtration	C1	75.8	261.0	0.4
FTP-A-B-C-D -E	WaterQuality	Stormwater Planter - Filtration	Lined	525.3	1,193.0	1.0

SEE APPENDIX E FOR PROPOSED FLOW CONTROL MEASURES

Design criteria:

Contech Stormfilter with ZPG filter is proposed and sized per below to treat Basins A, B, and C. Sizing is based on the City of Portland criteria, as is directed by the Oregon City Stormwater and Grading Design Standards (SWGDS).


Per the SWGDS, the water quality design storm is 1.0 inch over 24 hours.

Contech Water Quality Design	
Basin A Impervious Area	0.07 ac
	2901.00 sf
Peak flow - Hydrograph below:	0.01 cfs
	4.49 gpm

SWGDS Section 4.2, water quality design storm:

Water Quality Requirement: Water quality facilities shall be designed to capture and treat 80 percent of the average annual runoff volume to the MEP with the goal of 70 percent total suspended solids removal. The treatment volume equates to a water quality design storm of 1.0 inch over 24 hours¹. The BMP Sizing Tool addresses these water quality requirements to size stormwater management facilities.

Hydrograph Analysis of peak flow for sizing (Autodesk Storm and Sanitary Analysis 2018) SCS Type 1A 24-hr storm distribution

	Total Inflow Summary Table			
Time period Devent ID out-05				
From: 07/10/2018, 12:00:00 AM Maximum Total Inflow (ofs) 0.01				
T _α . 07/11/2018,12:00:10 ΔM Minimum Total Inflow (cfs) 0.00				
Event Mean Total Inflow (cfs) 0.00				
Thresholds Duration of Exceedances (hts) N/A				
Exceedance 0 Duration of Deficits (hrs) N/A				
Deficit 0 Number of Exceedances N/A				
Number of Deficits N/A				
Detention storage Volume of Exceedance (IP) N/A				
Max flow. Volume of Deficit (R) N/A				
Total Inflow Volume (IP) 191.8				
Detention Storage (IP) N/A				

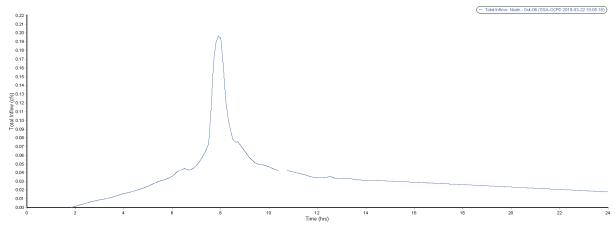
ZPG Contech Stormfilters per BES design criteria memo:

Table 1. C	Table 1. Contech StormFilter with ZPG Sizing to Meet City of Portland Pollution						
	Reduction Requirements						
Cartridge Design Maximum Maximum Cartridge Stacks							
Size/Stack	Flow Rate (gpm/	Drainage Area	Drainage Area	Per Impervious			
Configuration	cartridge stack)	(acres/ cartridge	(square feet/	Acre			
		stack)	cartridge stack				
12	5	0.065	2838	16			
18	7.5	0.098	4257	11			
27	11.3	0.147	6413	7			

To treat the 4.49 gpm runoff of Basin A, per Table 1 above a single cartridge catch basin configuration is proposed (7.5 gpm). Basins will be further refined in subsequent submittals to provide full treatment.

Design criteria:

Contech Stormfilter with ZPG filter is proposed and sized per below to treat Basins A, B, and C. Sizing is based on the City of Portland criteria, as is directed by the Oregon City Stormwater and Grading Design Standards (SWGDS).


Per the SWGDS, the water quality design storm is 1.0 inch over 24 hours.

Contech Water Quality Design	
Basin B+C Impervious Area	0.96 ac
	41920.00 sf
Peak flow - Hydrograph below:	0.20 cfs
	89.76 gpm

SWGDS Section 4.2, water quality design storm:

Water Quality Requirement: Water quality facilities shall be designed to capture and treat 80 percent of the average annual runoff volume to the MEP with the goal of 70 percent total suspended solids removal. The treatment volume equates to a water quality design storm of 1.0 inch over 24 hours¹. The BMP Sizing Tool addresses these water quality requirements to size stormwater management facilities.

Hydrograph Analysis of peak flow for sizing (Autodesk Storm and Sanitary Analysis 2018) SCS Type 1A 24-hr storm distribution

otal Inflow Summary Table

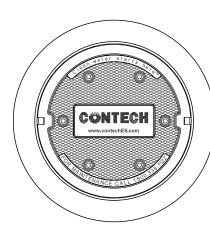
				i otai innow Summary Table
Г	ime period		Element ID	04/06
	rom: 07/10/2018,	12:00:00 AM	Maximum Total Inflow (cfs)	0.20
	α. 07/11/2018,	12:00:10 AM	Minimum Total Inflow (cfs)	0.00
			Event Mean Total Inflow (cfs)	0.03
	hresholds		Duration of Exceedances (hrs	N/A
	xceedance: 0			WA
	Deficit: 0			WA
	I		Number of Deficits	WA
	etention storage		Volume of Exceedance (fP)	WA
	fax flow: 0		Volume of Deficit (ft ⁹)	WA
11	iax nom. To		Total Inflow Volume (ft®)	2753.95
			Detention Storage (fP)	WA

ZPG Contech Stormfilters per BES design criteria memo:

Table 1. C	Contech StormFilter	with ZPG Sizing to	Meet City of Portla	nd Pollution
	F	Reduction Requirem	ents	
Cartridge	Cartridge Design	Maximum	Maximum	Cartridge Stacks
Size/Stack	Flow Rate (gpm/	Drainage Area	Drainage Area	Per Impervious
Configuration	cartridge stack)	(acres/ cartridge	(square feet/	Acre
_		stack)	cartridge stack	
12	5	0.065	2838	16
18	7.5	0.098	4257	11
27	11.3	0.147	6413	7

To treat the 89.76 gpm runoff of Basin B, per Table 1 above a 12 cartridge manhole configuration is proposed (90 gpm). A Contech Stormfilter 96" Manhole capable of holding 14 cartridges is proposed to meet this requirement.

Appendix C


Stormwater Details

STORMFILTER TREATMENT CAPACITY IS A FUNCTION OF THE CARTRIDGE SELECTION AND THE NUMBER OF CARTRIDGES. THE STANDARD MANHOLE STYLE IS SHOWN WITH THE MAXIMUM NUMBER OF CARTRIDGES (14). VOLUME SYSTEM IS ALSO AVAILABLE WITH MAXIMUM 14 CARTRIDGES. Ø8'-0" [2438 mm] MANHOLE STORMFILTER PEAK HYDRAULIC CAPACITY IS 1.8 CFS [51 L/s]. IF THE SITE CONDITIONS EXCEED 1.8 CFS [51 L/s] AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

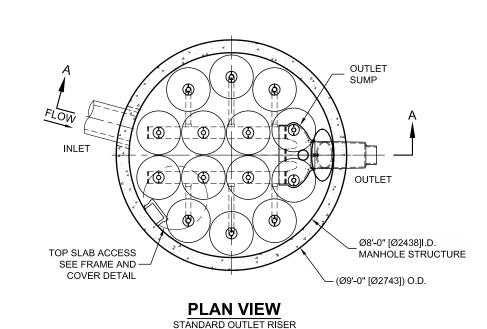
CARTRIDGE SELECTION

CARTRIDGE HEIGHT		27" [686 mm]		18" [458 mm]				LOW DROP	
RECOMMENDED HYDRAULIC DROP (H)		3.05' [930 mm]		2.3' [700 mm]			1.8' [550 mm]	
SPECIFIC FLOW RATE (gpm/sf) [L/s/m ²]	2 [1.30]	1.67* [1.08]	1 [0.65]	2 [1.30]	1.67* [1.08]	1 [0.65]	2 [1.30]	1.67* [1.08]	1 [0.65]
CARTRIDGE FLOW RATE (gpm) [L/s]	22.5 [1.42]	18.79 [1.19]	11.25 [0.71]	15 [0.95]	12.53 [0.79]	7.5 [0.44]	10 [0.63]	8.35 [0.54]	5 [0.32]

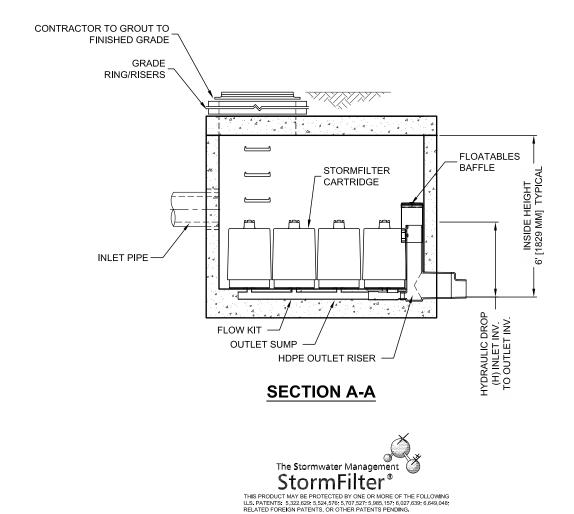
* 1.67 gpm/sf [1.08 L/s/m²] SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB[®] (PSORB) MEDIA ONLY

FRAME AND COVER

(DIAMETER VARIES) N.T.S.


GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- LLC REPRESENTATIVE. www.ContechES.com DRAWING.
- MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.
- BE 7-INCHES [178 mm]. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 38 SECONDS.


INSTALLATION NOTES

- SPECIFIED BY ENGINEER OF RECORD.
- C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT INLET PIPE(S).
- STUB AT MOLDED-IN CUT LINE. COUPLING BY FERNCO OR EQUAL AND PROVIDED BY CONTRACTOR.

FLOWKIT: 43A

STORMFILTER DESIGN NOTES

SITE SPECIFIC DATA REQUIREMENTS							
STRUCTURE ID *							
WATER QUALITY FLOW RATE (cfs) [L/s] *							
PEAK FLOW RATE (cfs) [L/s] *							
RETURN PERIOD OF PEAK FLOW (yrs) *							
CARTRIDGE HEIGHT (SEE TABLE ABOVE) *							
NUMBER OF CARTRIDGES REQUIRED *							
CARTRIDGE FLOW RATE *							
MEDIA TYPE (PERLITE, ZPG, PSORB) *							
PIPE DATA: I.E. MATERIAL DIAMETER							
= =	1.⊏.	r		U			
INLET PIPE #1							
INLET PIPE #2	*		*		*		
OUTLET PIPE	*		*		*		
RIM ELEVATION					*		
ANTI-FLOTATION	BALLAST		WIDTH	Т	HEIGHT		
			*		*		
NOTES/SPECIAL	REQUIREM	EN	TS:				
* PER ENGINEER	OF RECOR	D					

3. FOR SITE SPECIFIC DRAWINGS WITH DETAILED VAULT DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS

4. STORMFILTER WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS

5. STRUCTURE SHALL MEET AASHTO HS-20 LOAD RATING, ASSUMING EARTH COVER OF 0' - 5' [1524 mm] AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL

6. FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL

7. SPECIFIC FLOW RATE IS EQUAL TO THE FILTER TREATMENT CAPACITY (gpm) [L/s] DIVIDED BY THE FILTER CONTACT SURFACE AREA (sg ft)[m²]. 8. STORMFILTER STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND AASHTO LOAD FACTOR DESIGN METHOD.

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STORMFILTER STRUCTURE.

E. CONTRACTOR TO PROVIDE AND INSTALL CONNECTOR TO THE OUTLET RISER STUB. STORMFILTER EQUIPPED WITH A DUAL DIAMETER HDPE OUTLET STUB AND SAND COLLAR. IF OUTLET PIPE IS LARGER THAN 8 INCHES [200 mm], CONTRACTOR TO REMOVE THE 8 INCH [200 mm] OUTLET

F. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF.

SFMH96 STORMFILTER STANDARD DETAIL

STORMFILTER STEEL CATCHBASIN DESIGN NOTES

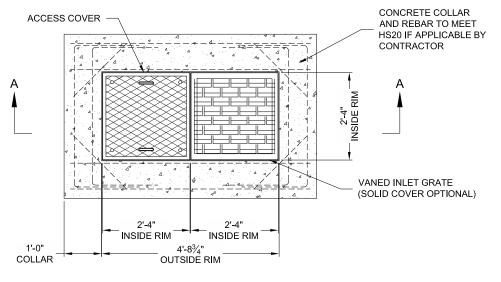
STORMFILTER TREATMENT CAPACITY IS A FUNCTION OF THE CARTRIDGE SELECTION AND THE NUMBER OF CARTRIDGES. 1 CARTRIDGE CATCHBASIN HAS A MAXIMUM OF ONE CARTRIDGE. SYSTEM IS SHOWN WITH A 27" CARTRIDGE, AND IS ALSO AVAILABLE WITH AN 18" CARTRIDGE. STORMFILTER CATCHBASIN CONFIGURATIONS ARE AVAILABLE WITH A DRY INLET BAY FOR VECTOR CONTROL. PEAK HYDRAULIC CAPACITY PER TABLE BELOW. IF THE SITE CONDITIONS EXCEED PEAK HYDRAULIC CAPACITY, AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

CARTRIDGE SELECTION

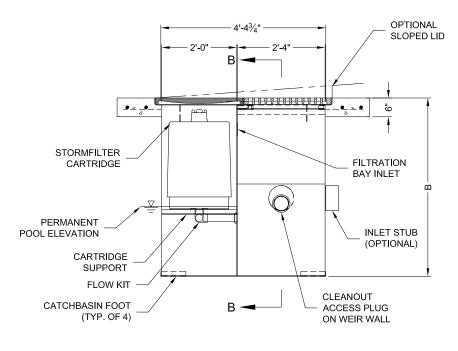
CARTRIDGE HEIGHT		27"		18"			18" DEEP			
RECOMMENDED HYDRAULIC DROP (H)	3.05'			2.3'			3.3'			
SPECIFIC FLOW RATE (gpm/sf)	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	
CARTRIDGE FLOW RATE (gpm)	22.5	18.79	11.25	15	12.53	7.5	15	12.53	7.5	
PEAK HYDRAULIC CAPACITY		1.0		1.0				1.8		
INLET PERMANENT POOL LEVEL (A)	1'-0"			1'-0"		2'-0"				
OVERALL STRUCTURE HEIGHT (B)		4'-9"			3'-9"		4'-9"			

* 1.67 gpm/sf SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB® (PSORB) MEDIA ONLY

GENERAL NOTES


- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE
- CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.contechES.com
- THIS DRAWING
- CONTRACTOR. OF THE STEEL SFCB.
- USING FLEXIBLE COUPLING BY CONTRACTOR.
- BY CONTRACTOR.
- 7-INCHES. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 38 SECONDS. 9. SPECIFIC FLOW RATE IS EQUAL TO THE FILTER TREATMENT CAPACITY (gpm) DIVIDED BY THE FILTER CONTACT SURFACE AREA (sq ft).

INSTALLATION NOTES


- ENGINEER OF RECORD.
- PROVIDED)
- C. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-526-3999 513-645-7000 513-645-7993 FAX

PLAN VIEW

SECTION A-A

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STORMFILTER CATCHBASIN STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR

3. STORMFILTER CATCHBASIN WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN

4. INLET SHOULD NOT BE LOWER THAN OUTLET. INLET (IF APPLICABLE) AND OUTLET PIPING TO BE SPECIFIED BY ENGINEER AND PROVIDED BY

5. MANUFACTURER TO APPLY A SURFACE BEAD WELD IN THE SHAPE OF THE LETTER "O" ABOVE THE OUTLET PIPE STUB ON THE EXTERIOR SURFACE

6. STORMFILTER CATCHBASIN EQUIPPED WITH 4 INCH (APPROXIMATE) LONG STUBS FOR INLET (IF APPLICABLE) AND OUTLET PIPING. STANDARD OUTLET STUB IS 8 INCHES IN DIAMETER. MAXIMUM OUTLET STUB IS 15 INCHES IN DIAMETER. CONNECTION TO COLLECTION PIPING CAN BE MADE

7. STEEL STRUCTURE TO BE MANUFACTURED OF 1/4 INCH STEEL PLATE. CASTINGS SHALL MEET AASHTO M306 LOAD RATING. TO MEET HS20 LOAD RATING ON STRUCTURE, A CONCRETE COLLAR IS REQUIRED. WHEN REQUIRED, CONCRETE COLLAR WITH #4 REINFORCING BARS TO BE PROVIDED

8. FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CATCHBASIN (LIFTING CLUTCHES

1-CARTRIDGE CATCHBASIN					
STORMFILTER DA	٩ΤΑ				
STRUCTURE ID		XXX			
WATER QUALITY FLOW RATE (cfs)		X.XX			
PEAK FLOW RATE (<1 cfs)		X.XX			
RETURN PERIOD OF PEAK FLOW (yrs) XXX					
CARTRIDGE HEIGHT (27", 18", 18" ĎEÉP) XX					
CARTRIDGE FLOW RATE (gpm) XX					
MEDIA TYPE (PERLITE, ZPG, PSORB)	XXXXX				
RIM ELEVATION	XXX.XX'				
PIPE DATA:	I.E.	DIAMETER			
INLET STUB	XXX XX'	XX"			
OUTLET STUB	XXX.XX'	XX"			
CONFIGURATION OUTLET C	DUTLET				
)]]]	ET			
	INLET				
SLOPED LID		YES\NO			
SOLID COVER		YES\NO			
NOTES/SPECIAL REQUIREMENTS:					

1 CARTRIDGE CATCHBASIN STORMFILTER STANDARD DETAIL

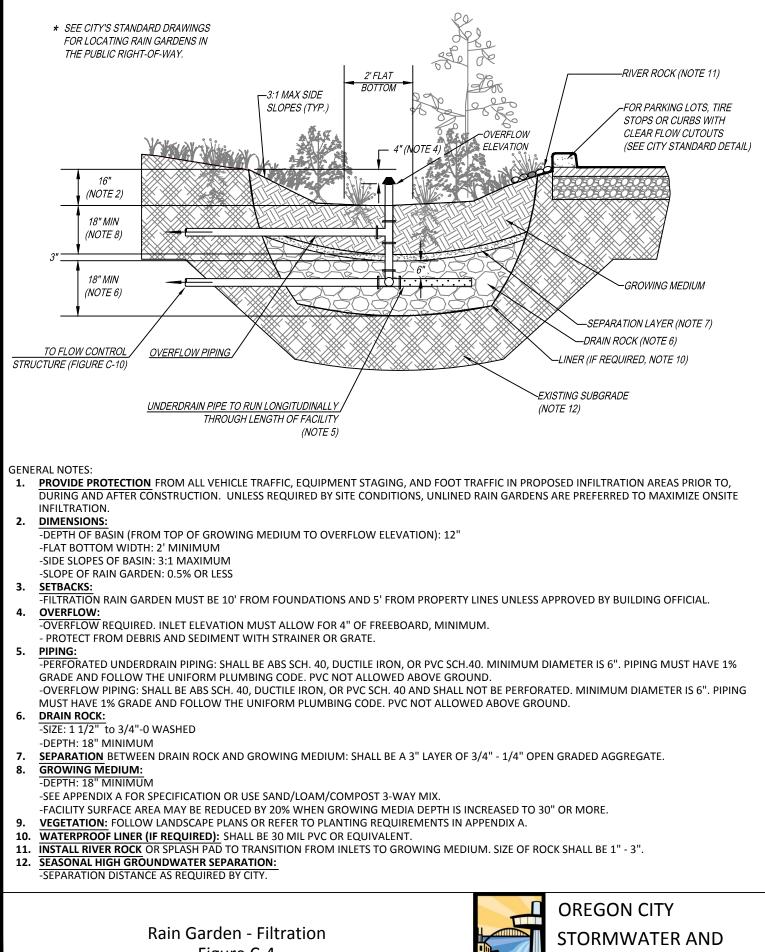
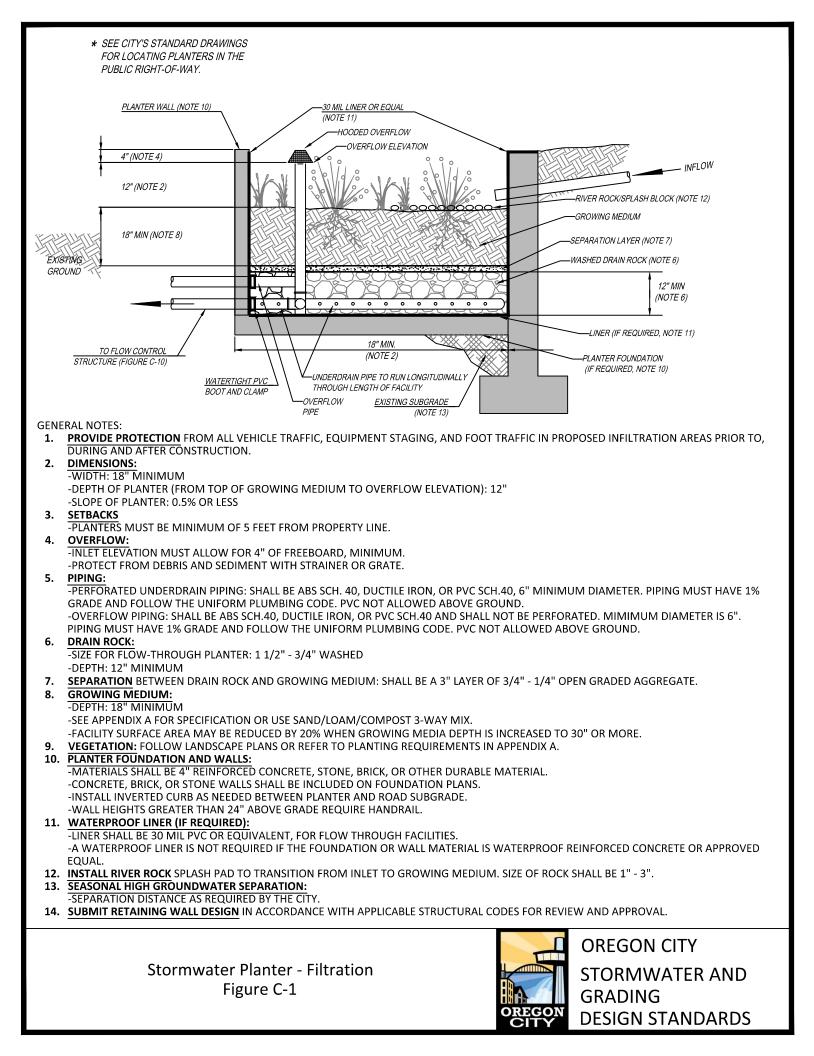



Figure C-4

GRADING DESIGN STANDARDS

ADVANCED DRAINAGE SYSTEMS, INC.

OCPD Oregon City, OR

STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740, SC-310, OR APPROVED EQUAL. 1
- CHAMBERS SHALL BE MANUFACTURED FROM VIRGIN POLYPROPYLENE OR POLYETHYLENE RESINS. 2.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORT PANELS THAT 3. WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL MEET ASTM F2922 (POLYETHYLENE) OR ASTM F2418 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR 5 THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBERS SHALL BE DESIGNED AND ALLOWABLE LOADS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE 6 FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 7 ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. THE CHAMBER MANUFACTURER SHALL SUBMIT THE FOLLOWING UPON REQUEST TO THE SITE DESIGN ENGINEER FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE:
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE SAFETY a. FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY AASHTO FOR THERMOPLASTIC PIPE.
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE LOAD b. FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET. THE 50 YEAR CREEP MODULUS DATA SPECIFIED IN ASTM F2418 OR ASTM F2922 MUST BE USED AS PART OF THE AASHTO STRUCTURAL EVALUATION TO VERIFY LONG-TERM PERFORMANCE.
 - STRUCTURAL CROSS SECTION DETAIL ON WHICH THE STRUCTURAL EVALUATION IS BASED. c.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 8.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-310/SC-740 SYSTEM

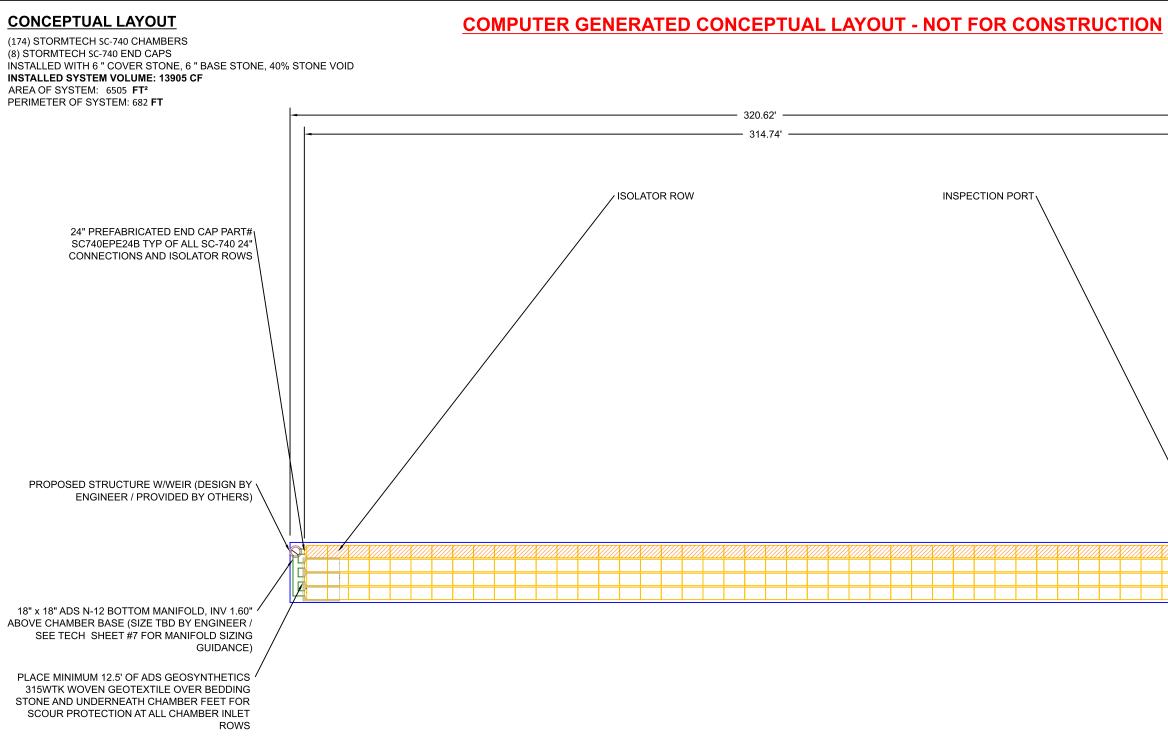
- STORMTECH SC-310 & SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1. PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH SC-310 & SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/SC-780 CONSTRUCTION 2. GUIDE"
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. 3.

STORMTECH RECOMMENDS 3 BACKFILL METHODS:

- STONESHOOTER LOCATED OFF THE CHAMBER BED.
- BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5
- MAINTAIN MINIMUM 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS. 6.
- 7. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 3/4-2" (20-50 mm).
- THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN 8. ENGINEER
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9 STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1. STORMTECH SC-310 & SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-310 & SC-740 CHAMBERS IS LIMITED: • NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. • NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

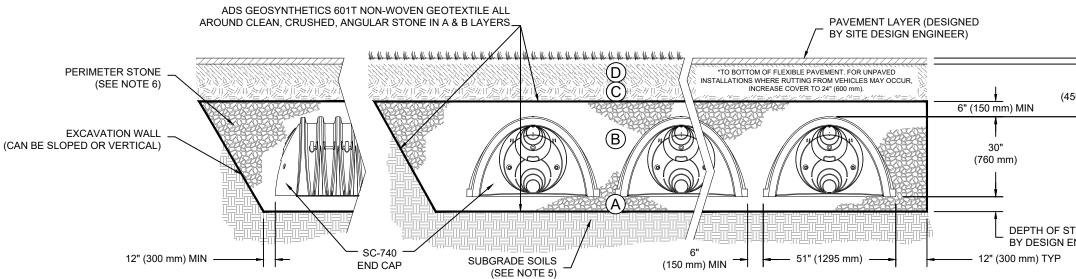

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

• WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

					Τ		ATE
SHEET	<u></u>	DU	City, UK		lá		NSTRUCTION. IT IS THE ULTIM
SHEET		UU UU	Uregon	01/25/2019		307EC1 #: 1001	VIEW THIS DRAWING PRIOR TO CC
SHEET		DESCRIPTION					.TIVE. THE SITE DESIGN ENGINEER SHALL REV ND PROJECT REQUIREMENTS.
SHEET		DRW					OR OTHER PROJECT REPRESENTA PLICABLE LAWS, REGULATIONS, AI
SHEET	20.50'		<u>С</u>	Detention Retention Water Quality	70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067	860-529-8188 [888-892-2694] WWW.STORMTECH.COM	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER (E PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL AF
SHEET		4640 TRUEMAN BLVD	.0		NOT TO SCALE		DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVI PONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH
			AD				THIS (ESF

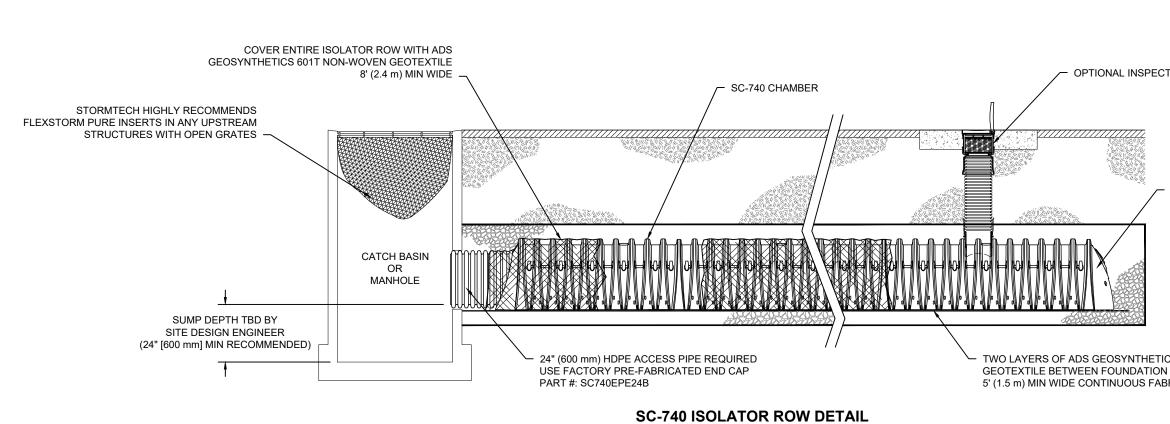
ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS


	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DI REQUIREMEI
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN END PAVED INSTALLATIONS MAY HA MATERIAL AND PREPARATION F
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	OR	BEGIN COMPACTIONS AFTER MATERIAL OVER THE CHAMBER COMPACT ADDITIONAL LAYERS II LIFTS TO A MIN. 95% PROCTOF WELL GRADED MATERIAL AND DENSITY FOR PROCESSED MATERIALS. ROLLER GROSS VI NOT TO EXCEED 12,000 lbs (53 FORCE NOT TO EXCEED 20,0
в	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQ
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO / SURFACE. ^{2 3}

PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY


3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT CO EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.

NOTES:

- 1. SC-740 CHAMBERS SHALL CONFORM TO THE REQUIREMENTS OF ASTM F2418 "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS", OR ASTM F2922 "STANDARD SPECIFICATION FOR POLYETHYLENE (PE) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. "ACCEPTABLE FILL MATERIALS" TABLE ABOVE PROVIDES MATERIAL LOCATIONS, DESCRIPTIONS, GRADATIONS, AND COMPACTION REQUIREMENTS FOR FOUNDATION, EMBEDMENT, AND FILL MATERIALS.
- 4. THE "SITE DESIGN ENGINEER" REFERS TO THE ENGINEER RESPONSIBLE FOR THE DESIGN AND LAYOUT OF THE STORMTECH CHAMBERS FOR THIS PROJECT.
- 5. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 6. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 7. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

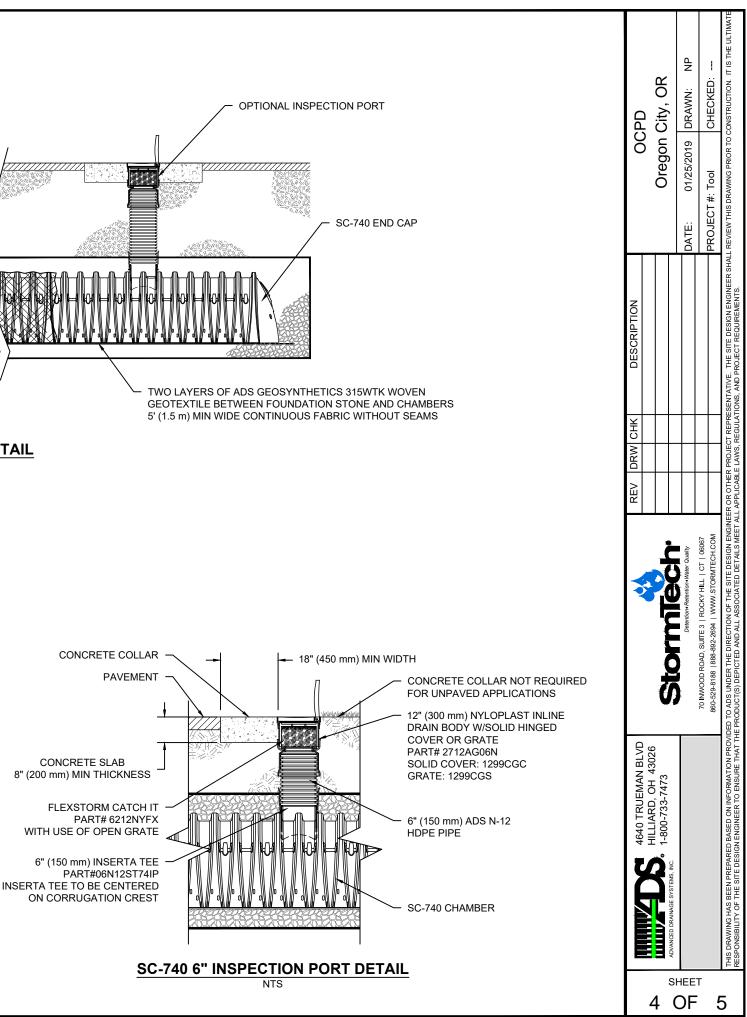
SHEET 3 OF 5	STONE TO BE DETERMINED TENGINEER 6" (150 mm) MIN AM 143026 Tenore		REV	COMPACTOR. COMPACTION	I, CRUSHED,	QUIRED.	ERS IS REACHED. IN 6" (150 mm) MAX DR DENSITY FOR D 95% RELATIVE D AGGREGATE VEHICLE WEIGHT 53 kN). DYNAMIC ,000 lbs (89 kN).	DENSITY INT IGINEER'S PLANS. IAVE STRINGENT REQUIREMENTS. 12" (300 mm) OF 12" (300 mm) OF 12" (300 mm) OF	ENSITY INT INT ICINEEDIS DI ANS	
-----------------	--	--	-----	--------------------------	-------------	---------	--	--	--	--

NTS

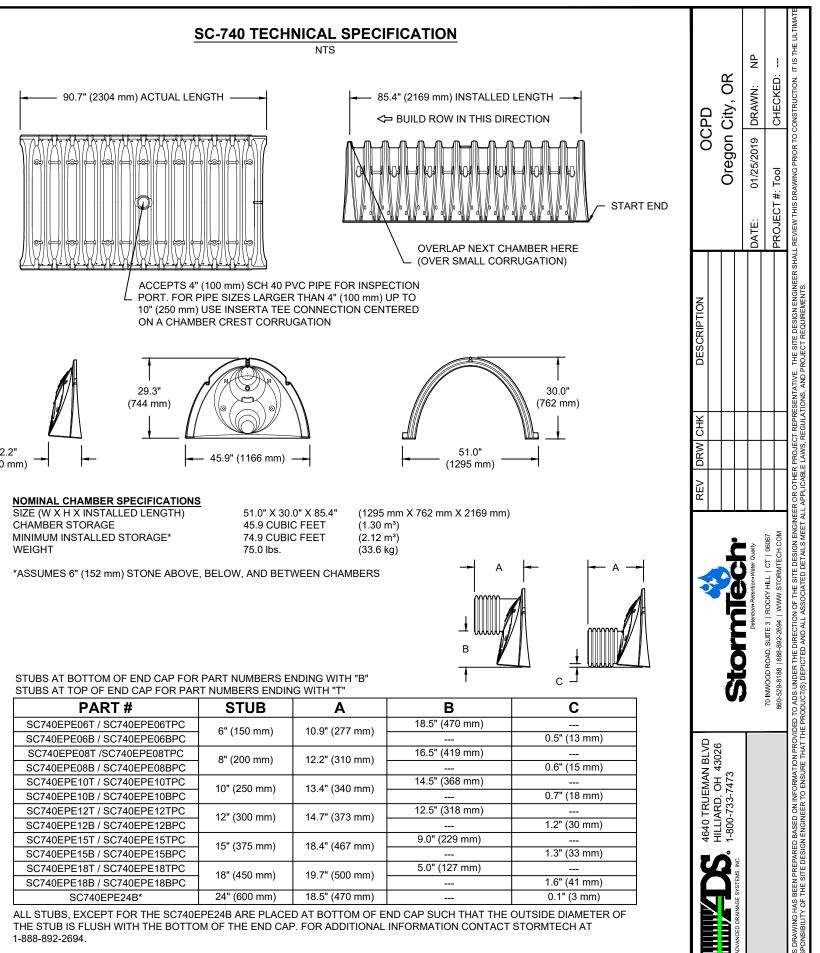
INSPECTION & MAINTENANCE

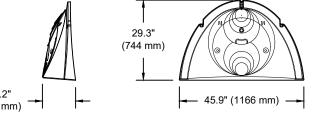
STEP 1) INSPECT ISOLATOR ROW FOR SEDIMENT

A. INSPECTION PORTS (IF PRESENT)


- REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.1.
- REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
- USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.3.
- A.4. LOWER A CAMERA INTO ISOLATOR ROW FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. A.5.
- B. ALL ISOLATOR ROWS

B.3.

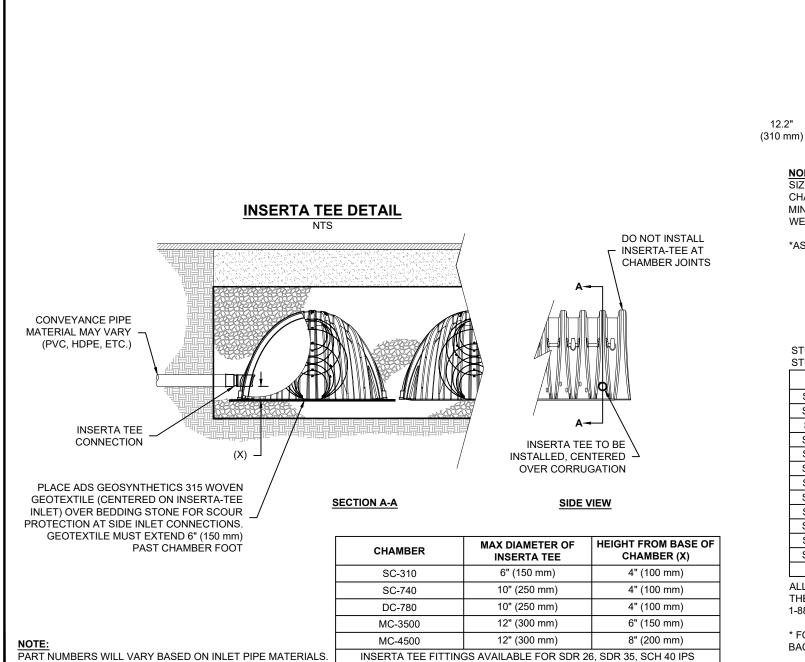

- B 1
- REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 3)
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)


NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS 1. OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

SIZE (W X H X INSTALLED LENGTH)
CHAMBER STORAGE
MINIMUM INSTALLED STORAGE*
WEIGHT

STUBS AT TUP OF END CAP FUR PAR	T NUMBERS ENDIN	GWIIHI	_
PART #	STUB	Α	
SC740EPE06T / SC740EPE06TPC	6" (150 mm)	10.9" (277 mm)	
SC740EPE06B / SC740EPE06BPC	0 (100 mm)	10.9 (277 1111)	
SC740EPE08T /SC740EPE08TPC	8" (200 mm)	12.2" (310 mm)	
SC740EPE08B / SC740EPE08BPC	0 (200 mm)	12.2 (310 1111)	
SC740EPE10T / SC740EPE10TPC	10" (250 mm)	13.4" (340 mm)	
SC740EPE10B / SC740EPE10BPC	10 (230 mm)	13.4 (340 1111)	
SC740EPE12T / SC740EPE12TPC	12" (300 mm)	14.7" (373 mm)	
SC740EPE12B / SC740EPE12BPC	12 (300 mm)	14.7 (373 1111)	
SC740EPE15T / SC740EPE15TPC	15" (375 mm)	18.4" (467 mm)	
SC740EPE15B / SC740EPE15BPC	13 (373 1111)	10.4 (407 1111)	
SC740EPE18T / SC740EPE18TPC	18" (450 mm)	19.7" (500 mm)	
SC740EPE18B / SC740EPE18BPC	16 (450 mm)	19.7 (500 mm)	
SC740EPE24B*	24" (600 mm)	18.5" (470 mm)	


* FOR THE SC740EPE24B THE 24" (600 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 1.75" (44 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

SHEET

5

5 OF

NOTE: ALL DIMENSIONS ARE NOMINAL

GASKETED & SOLVENT WELD, N-12, HP STORM, C-900 OR DUCTILE IRON

INTENTIONALLY

LEFT BLANK

PART NUMBERS WILL VARY BASED ON INLET PIPE MATERIALS. CONTACT STORMTECH FOR MORE INFORMATION.

Appendix D

Site Assessment and Planning Checklist

		SITE ASSESSMENT AND PLANNING CHECKLIST					
~	Information needed	Attach supporting materials as needed					
2.2.	1 Site Information						
	Applicant contact	Applicant name: James Band					
	information	Business name: Oregon City Police Department					
		Contact address, phone number, and e-mail:					
	Project location	Site address: 1234 Linn Avenue, Oregon City					
		Site description: The site will be the new home of the					
		Oregon City Police and Courts Facility, including associated					
		parking and utility site improvements					
		Major drainage basin: Coffee Basin					
		Is the project site located with the WQRA as defined in OCMC 17.49? N (Y/N)					
		Include a vicinity map of the site (including location of property in relation to adjacent properties, roads, and pedestrian/bike facilities). (Narrative page 1)					
	Project type	Identify types of development planned for the site such as commercial, industrial, single- family residential, multi-family residential, or other (describe): Public Facilities					
	Size of site	Size of site: 8.34 (acres)					
		Number of existing/proposed tax lots: <u>3</u>					
		Amount of new and replaced impervious area: <u>127,628</u> (SF)					
	2 Site Assessment e: Site assessment informat	ion may be available from the OCMaps online tool available through the City's website.					
	Site Assessment Map	Attach engineered scale Site Assessment Map, showing items below.					
	Topography Evaluate site and map slopes:	Surveyed or aerial-based mapping with 2-foot intervals for slopes 0-25% slope and 10-foot intervals for steeper. Indicate Geologic Hazard Areas as defined by OCMC 17.04.510 and Geologic Hazards Overlay Zone as defined by OCMC 17.04.515.					
	Flat: 0-10% Moderate: 10-25% Steep: 25% and greater	See Grading Plan C-400					
	Soils and Groundwater	NRCS Hydrologic Soil Type (show on map if more than one type present):					
	Research and map site soil hydrologic group, depth to groundwater	Attach seasonal groundwater depth evaluation if available or required (site has floodplain and/or wetland). Groundwater depth information is available from the City. Appendix D2					
	Infiltration Assessment Determine soil capacity for onsite infiltration	If an infiltration test is performed, attach the documentation. Report the test type (Basic/Professional) performed and results. See Appendix D for the approved infiltration testing methods. Test type: Cased-hole falling head 0.375 (inches/hour)					

		SITE ASSESSMENT AND PLANNING CHECKLIST			
	Hydrology – Conditions and Natural Features Map site floodplains, wetlands, streams, and location of outfalls	Clearly label on map all intermittent and perennial creeks/streams/rivers and wetlands, FEMA floodplains, and existing drainage systems (pipes, ditches, outfalls). Check here if present on site: <u>N/A</u> Sensitive area(s) <u>N/A</u> Floodplain <u>N/A</u>			
	Downstream Conveyance	Indicate the proposed point of discharge on the site plan. <i>Prepare and attach a Downstream Analysis as required by</i> Chapter 5 . Check here to verify that adequate downstream capacity is available: _ Appendix E			
	Existing Vegetation Map trees and vegetation	Using aerial photos or survey, map all trees and vegetation. Note all existing trees 6-inch caliper and greater (DBH) on map. Delineate and identify other areas and types of existing vegetation. See tree plan The local planning authority may require a formal tree survey.			
	Required Vegetated Buffers and Setbacks Assess and map buffers	Identify required vegetated buffer areas and other setback limits as defined by OCMC Title 17. See tree plan			
	Land Use and Zoning	Existing Land Use Zoning designation(s): I - Institutional			
	Access and Parking	Delineate proposed access points for all transportation modes on map. Indicate amount and area of required parking onsite if applicable, attach documentation as needed. C-300			
	Utilities to Site and Surrounding Area	Map existing utilities including stormwater facilities, storm conveyance, sewer, water, electricity, phone/cable, gas, and any public storm system/facility downstream.			
2.2	1. Preserve existing resources	Required: Show sensitive areas and buffers on site plan. Plans C-101 through C-106 Required: Show sensitive areas and buffers on site plan. Denote buffer areas that require enhancement. Show any proposed areas of encroachment and associated buffer mitigation areas. Image: Comparison of the sensitive areas and buffer areas that require enhancement.			
	2. Minimize site disturbance	Required: Delineate protection areas on site plan for areas to remain undisturbed during construction.			
	3. Minimize soil compaction	Required: Delineate and note temporary fencing on site plan for proposed infiltration facilities, vegetated stormwater management facilities, and re-vegetation areas.			
	4. Minimize imperviousness	Required: Delineate proposed impervious areas and proposed impervious area reduction methods on the site plan. A. Total proposed new/replaced impervious area: <u>127,628</u> (SF) B. Area of proposed Green Roofs: <u>0</u> (SF) C. Area of proposed pervious pavements: <u>0</u> (SF) D. Describe type of pavers or pavement proposed: <u>Standard asphalt and concrete pavements</u> E. Impervious area requiring management [A-(B+C)]: <u>127,628</u> (SF)			

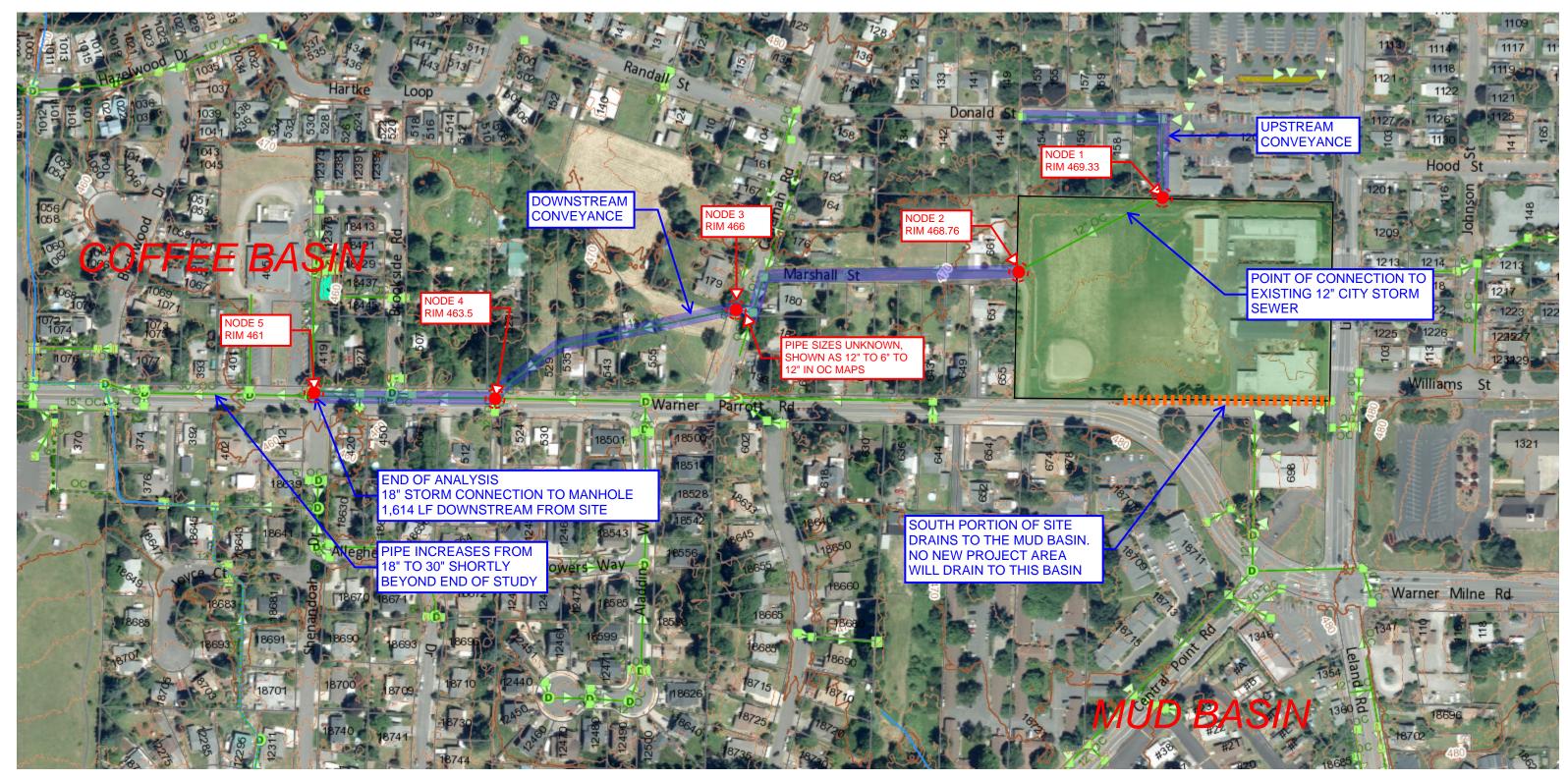
	SITE ASSESSMENT AND PLANNING CHECKLIST							
2.2.4	2.2.4 Proposed Stormwater Management Strategy							
	Proposed Stormwater	Infiltration facilities						
	Management Strategy	Surface Infiltration facilities to the MEP						
		Full onsite retention/infiltration up to the 10-year storm event						
		Infiltration facilities are limited by the following conditions (include documentation to demonstrate the limiting condition and choose an alternate strategy below):						
		Stormwater management facility to be located on fill						
		Steep slopes						
		High groundwater						
		Contaminated soils						
		Conflict with required Source Controls (Chapter 6)						
		Onsite Stormwater management facilities (indicate below)						
		Offsite stormwater management facilities/regional facilities						
		Fee in Lieu, as determined by the City						
	Preliminary Facility Selection/Sizing	Check all that apply, attach output from BMP Sizing Tool, and show proposed Stormwater Management Facilities on Preliminary Site Plan.						
		LID facilities:						
		Infiltration Stormwater Planter						
		Filtration Stormwater Planter						
		Infiltration Rain Garden						
		Filtration Rain Garden						
		Vegetated Swale						
		Detention Pond						
		Infiltration Trench						
		X Manufactured Treatment Technology						
		X Other: Underground detention chambers						
	Verify Minimum Facility	A. Required surface area of onsite surface infiltration facilities:						
	Size	As determined by BMP sizing tool or engineered method: $1,242$ (SF)						
		B. Calculate MEP surface area of surface infiltration facilities for sites with limiting conditions:						
		Total new/replaced impervious area (SF) x 0.10 = $12,763$ (SF)						
		C. Calculate required surface area of onsite LID facilities:						
		Smaller of [A] or [B]: <u>1,242</u> (SF)						
		D. Proposed surface infiltration facility size(s):						
		From site plan: $3,045$ (SF) must be larger than [C]						

SITE ASSESSMENT AND PLANNING CHECKLIST										
2.2.5 Other Project Require	2.2.5 Other Project Requirements									
Grading Permit	Review OCMC 15.48 to determine whether a grading permit will be required. Grading permit required? \underline{Y} (Y/N) Type of Grading Plan proposed (see Chapter 3): Engineered Grading Plan									
Erosion Prevention and Sediment Control	Identify the required permits: <u>X</u> ESC Permit from the City (<i>sites that include 1,000+ SF new or replaced impervious area</i>) <u>X</u> 1200-C Permit from DEQ (<i>sites that disturb 1 acre or more land surface</i>)									
Source Control for High Use Sites	Identify whether the proposed development will include any of the following: Fuel Dispensing Facilities and Surrounding Traffic Areas Above-Ground Storage of Liquid Materials Solid Waste Storage Areas, Containers, and Trash Compactors Exterior Storage of Bulk Materials Material Transfer Areas/Loading Docks Equipment and/or Vehicle Washing Facilities Development on Land With Suspected or Known Contamination Covered Vehicle Parking Areas Industrial and Commercial High Traffic Areas Other land uses subject to the ODEQ 1200-Z Industrial Stormwater Permit									
Other Permits	Identify other natural resources related permits from local, state, or federal agencies that may be required as part of the proposed development activity. It is the responsibility of the applicant to identify and obtain required permits prior to project approval. List other anticipated permits: Oregon DEQ Underground Injection Control Closure Permit for removal of existing drywell									

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP L	EGEND		MAP INFORMATION		
Area of Interest (AOI)	😑 Spoil Are	ea	The soil surveys that comprise your AOI were mapped at		
Area of Interest (AOI)	Stony Sp	pot	1:20,000.		
Soils	M Very Sto	ony Spot	Warning: Soil Map may not be valid at this scale.		
Soil Map Unit Polygons	🥎 Wet Spo	ot	Enlargement of maps beyond the scale of mapping can cause		
Soil Map Unit Lines	∆ Other		misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of		
Soil Map Unit Points	_	Line Features	contrasting soils that could have been shown at a more detaile		
Special Point Features	Water Features		scale.		
Blowout		and Canals	Please rely on the bar scale on each map sheet for map		
Borrow Pit	Transportation		measurements.		
💥 Clay Spot	+++ Rails		Source of Map: Natural Resources Conservation Service Web Soil Survey URL:		
Closed Depression	Market Interstate	e Highways	Coordinate System: Web Mercator (EPSG:3857)		
Gravel Pit	🥪 US Rout	tes	Maps from the Web Soil Survey are based on the Web Mercat		
Gravelly Spot	🥪 🛛 Major Ro	oads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as th		
🔇 Landfill	na Local Ro	bads	Albers equal-area conic projection, should be used if more		
🙏 🛛 Lava Flow	Background		accurate calculations of distance or area are required.		
Arsh or swamp	Aerial Ph	hotography	This product is generated from the USDA-NRCS certified data of the version date(s) listed below.		
Mine or Quarry			Soil Survey Area: Clackamas County Area, Oregon		
Miscellaneous Water			Survey Area Data: Version 14, Sep 18, 2018		
Perennial Water			Soil map units are labeled (as space allows) for map scales		
V Rock Outcrop			1:50,000 or larger.		
Saline Spot			Date(s) aerial images were photographed: Jul 26, 2014—Se 2014		
Sandy Spot			The orthophoto or other base map on which the soil lines were		
Severely Eroded Spot			compiled and digitized probably differs from the background		
Sinkhole			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		
b Slide or Slip					
Sodic Spot					

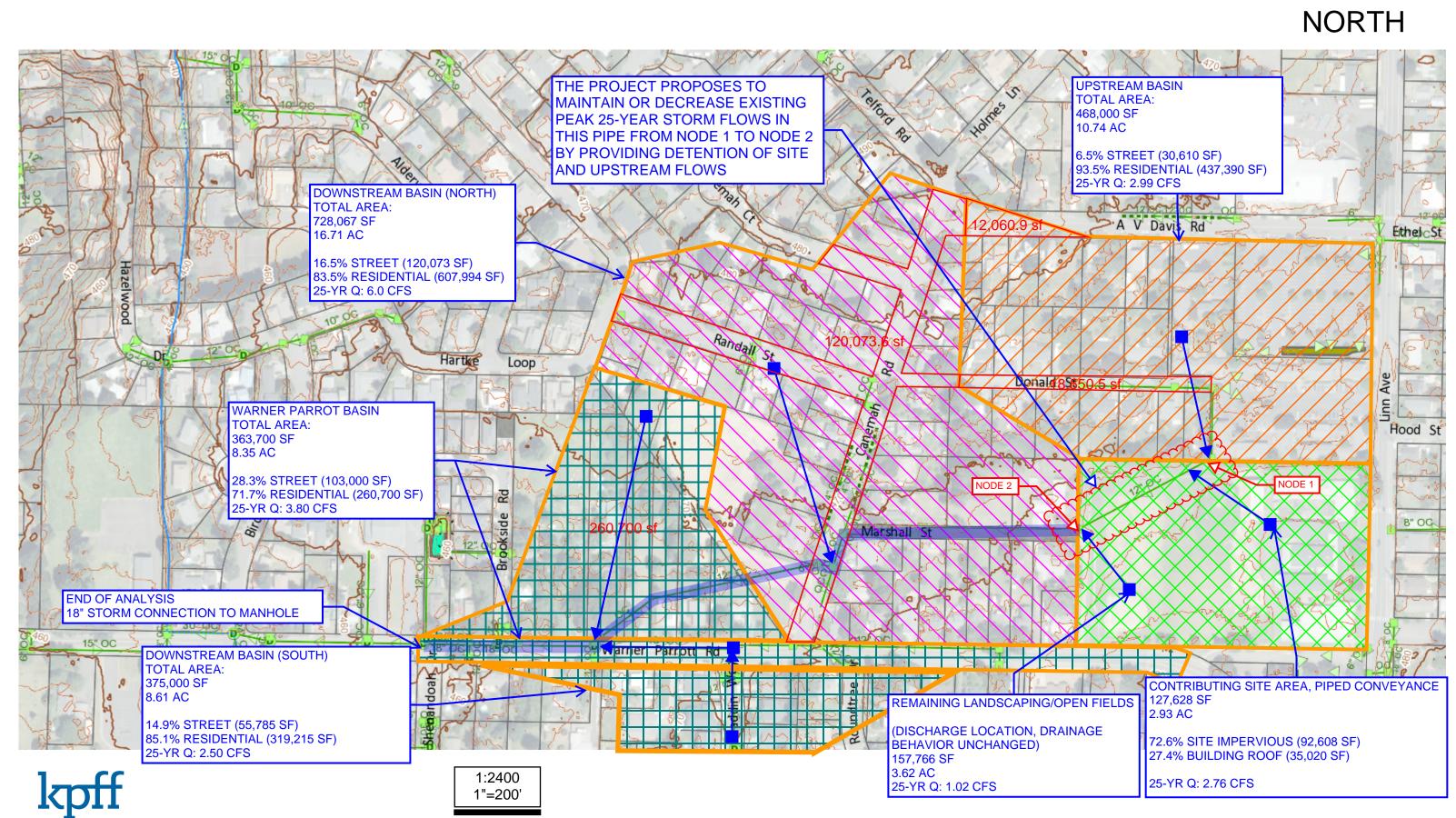
Map Unit Legend


Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8B	Bornstedt silt loam, 0 to 8 percent slopes	7.6	98.4%
24B	Cottrell silty clay loam, 2 to 8 percent slopes	0.1	1.6%
Totals for Area of Interest	,	7.7	100.0%

Appendix E

Downstream Analysis and Detention Calculations

OREGON CITY POLICE AND COURTS STORM CONNECTION FEASIBILITY AND DOWNSTREAM ANALYSIS 3/27/2019

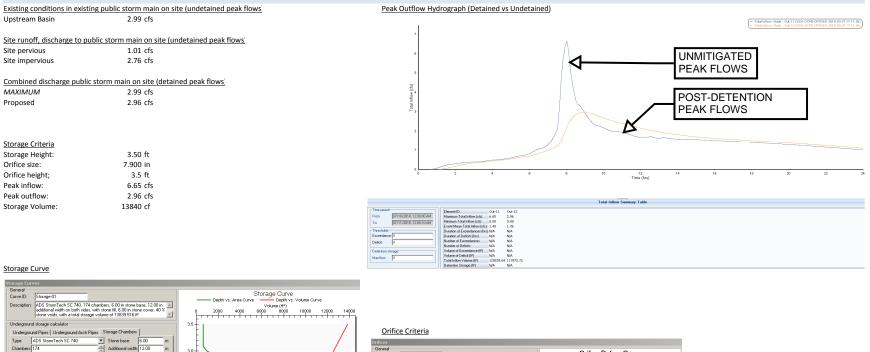


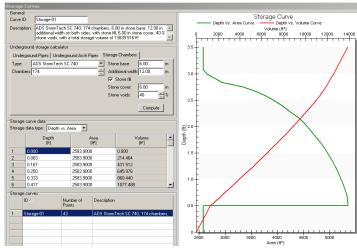
kpff

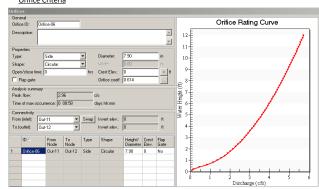
1:2400 1"=200'

OVERALL

OREGON CITY POLICE AND COURTS STORM CONNECTION FEASIBILITY AND DOWNSTREAM ANALYSIS 3/27/2019

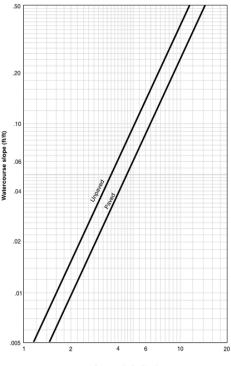



Downstream Analysis Calculations Detention Summary Appendix E


Detention Approach Summary

The upstream basin serves as the existing peak flow that the combined upstream, site pervious, and site impervious must match or be below. This will demonstrate that no adverse impacts to the downstream system will result from the proposed improvements. All flows are results of the 25-year storm model as shown in the attached hydrographs.

Stormtech SC-740 chambers with 6-inches of rock storage above and below are proposed. A Flow Control Manhole located on the existing public storm main will intercept flows from upstream and the site and provide detainment. An overflow weir will be located to bypass higher flows at the top of the proposed storage facility which will be located vertically as to not cause upstream flooding issues during overflow events.


Design criteria:

Time of concentration (TOC) is calculated based on the Oregon City Stormwater Grading and Design Standards and the design criteria shown below. A time is first calculated for sheet flow up to a maximum of 300-ft before calculating concentrated flow time. This TOC represents flows crossing the non-impervious areas of each basin. Impervious areas (streets) are assumed to have the minimum 5 minute TOC. Finally, the composite TOC for each basin is calculated based on the weighted area of paved versus unpaved area for each basin. Each Basin TOC is used in the respective SBUH hydrograph modeling performed to determine peak flows for the 25-year storm.

Time of Concentrat	tion
--------------------	------

Average Sheet Flow (L,		Remaining									
Slope (s,	Sheet Flow	ft)	T-sheet flow	L	Velocity	T-concentrated	Тс	Тс	UNPAVED	PAVED	
ft/ft)	Roughness (n)	(300-ft max)	(min)	(ft) (per table)	flow (min)	(unpaved)	(paved)	(%/100)	(%/100)	COMPOSITE T
0.0229	0.03	300	6.60	400	2.4	2.78	9.38	5	0.935	0.065	9.09
0.0078	0.15	300	36.72	370	1.4	4.40	41.13	5	0.527	0.473	24.04
0.0175	0.03	300	7.34	500	2.1	3.97	11.31	5	0.835	0.165	10.27
0.0163	0.03	300	7.55	220	2.1	1.75	9.29	5	0.717	0.283	8.08
0.0029	0.03	300	15.01	550	1.2	7.64	22.64	5	0.851	0.149	20.02
	Slope (s, ft/ft) 0.0229 0.0078 0.0175 0.0163	Slope (s, Sheet Flow ft/ft) Roughness (n) 0.0229 0.03 0.0078 0.15 0.0175 0.03 0.0163 0.03	Slope (s, Sheet Flow ft) ft/ft) Roughness (n) (300-ft max) 0.0229 0.03 300 0.0078 0.15 300 0.0175 0.03 300 0.0163 0.03 300	Slope (s, Sheet Flow ft) T-sheet flow ft/ft) Roughness (n) (300-ft max) (min) 0.0229 0.03 300 6.60 0.0078 0.15 300 36.72 0.0175 0.03 300 7.34 0.0163 0.03 300 7.55	Slope (s, Sheet Flow ft) T-sheet flow L ft/ft) Roughness (n) (300-ft max) (min) (ft) (ft) 0.0229 0.03 300 6.60 400 0.0078 0.15 300 36.72 370 0.0175 0.03 300 7.34 500 0.0163 0.03 300 7.55 220	Slope (s, Sheet Flow ft) T-sheet flow L Velocity ft/ft) Roughness (n) (300-ft max) (min) (ft) (per table) 0.0229 0.03 300 6.60 400 2.4 0.0078 0.15 300 36.72 370 1.4 0.0175 0.03 300 7.34 500 2.1 0.0163 0.03 300 7.55 220 2.1	Slope (s, ft/ft) Sheet Flow ft) (300-ft max) T-sheet flow (min) L Velocity (ft) (per table) T-concentrated flow (min) 0.0229 0.03 300 6.60 400 2.4 2.78 0.0078 0.15 300 36.72 370 1.4 4.40 0.0175 0.03 300 7.34 500 2.1 3.97 0.0163 0.03 300 7.55 220 2.1 1.75	Slope (s, ft/ft) Sheet Flow ft) (300-ft max) T-sheet flow (min) L Velocity (ft) (per table) T-concentrated (flow (min)) Tc (unpaved) 0.0229 0.03 300 6.60 400 2.4 2.78 9.38 0.0078 0.15 300 36.72 370 1.4 4.40 41.13 0.0175 0.03 300 7.34 500 2.1 3.97 11.31 0.0163 0.03 300 7.55 220 2.1 1.75 9.29	Slope (s, ft/ft) Sheet Flow ft) (300-ft max) T-sheet flow (min) L Velocity (ft) (per table) T-concentrated flow (min) Tc Tc 0.0229 0.03 300 6.60 400 2.4 2.78 9.38 5 0.0078 0.15 300 36.72 370 1.4 4.40 41.13 5 0.0175 0.03 300 7.34 500 2.1 3.97 11.31 5 0.0163 0.03 300 7.55 220 2.1 1.75 9.29 5	Slope (s, ft/ft) Sheet Flow (ft) (300-ft max) T-sheet flow (min) L Velocity (ft) (per table) T-concentrated flow (min) Tc Tc UNPAVED 0.0229 0.03 300 6.60 400 2.4 2.78 9.38 5 0.935 0.0078 0.15 300 36.72 370 1.4 4.40 41.13 5 0.527 0.0175 0.03 300 7.34 500 2.1 3.97 11.31 5 0.835 0.0163 0.03 300 7.55 220 2.1 1.75 9.29 5 0.717	Slope (s, ft/ft) Sheet Flow ft) (300-ft max) T-sheet flow (min) L Velocity (ft) (per table) T-concentrated flow (min) Tc UNPAVED PAVED 0.0229 0.03 300 6.60 400 2.4 2.78 9.38 5 0.935 0.065 0.0078 0.15 300 36.72 370 1.4 4.40 41.13 5 0.527 0.473 0.0175 0.03 300 7.34 500 2.1 3.97 11.31 5 0.835 0.165 0.0163 0.03 300 7.55 220 2.1 1.75 9.29 5 0.717 0.283

FIGURE 3-1 TR-55 URBAN HYDROLOGY FOR SMALL WATERSHEDS

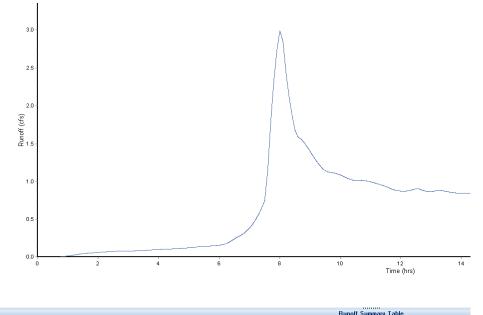
Average velocity (ft/sec)

EXCERPT FROM OREGON CITY STORMWATER AND GRADING DESIGN GUIDELINES

- D. In computing the Time of Concentration (Tc), for smaller basins, the largest and most significant component in the total Tc is the portion of the time devoted to sheet flow. For this reason, extreme care should be given to determining the true travel time for the sheet flow component of the Tc. In calculating the total Tc, the following limitations will apply:
 - The flow segment used for the sheet flow component shall not extend for more than 300 feet. The use of a distance of less than 200 feet on a pre-developed land use will require supporting documentation, such as photographs that show evidence of shallow concentrated flow at the point of transition.
 - For segments of the Tc route that flow through closed conveyance facilities, such as pipes and culverts, use standard hydraulics formulas for establishing velocity and travel time.
 - For segments of the Tc route that flow through lakes or submerged wetlands, travel time is normally very short. The travel time can be determined using an appropriate storage routing technique, or it can be assumed to be zero.
 - 4. The minimum total Tc used in the runoff calculations shall be 5 minutes.

EXCERPTS FROM TR-55 URBAN HYDROLOGY FOR SMALL WATERSHEDS

Overland Surface	Manning value (n)	Table 3-1 Roughness coefficients (Manning's r	i) for
Smooth asphalt pavement	0.010	sheet flow	0101
Smooth impervious surface	0.011	Sheet non	
Tar and sand pavement	0.012		
Concrete pavement	0.014	Surface description	n V
Rough impervious surface	0.015	ounact description	N =
Smooth bare packed soil	0.017		
Moderate bare packed soil	0.025	Smooth surfaces (concrete, asphalt,	
Rough bare packed soil	0.032	gravel, or bare soil)	0.011
Gravel soil	0.025	Fallow (no residue)	0.05
Mowed poor grass	0.030	Cultivated soils:	
Average grass, closely clipped sod	0.040	Residue cover ≤20%	0.06
Pasture	0.040	Residue cover >20%	0.17
Timberland	0.060		0.17
Dense grass	0.060	Grass:	
Shrubs and bushes	0.080	Short grass prairie	0.15
Land Use		Dense grasses 2/	0.24
Business	0.014	Bermudagrass .	0.41
Semibusiness	0.022	Range (natural)	0.13
Industrial	0.020	Woods:≆	
Dense residential	0.025	Light underbrush	0.40
Suburban residential	0.030		
Parks and lawns	0.040	Dense underbrush	0.80


Downstream Analysis Basin Calculations Upstream Basin Appendix E

Design criteria:

The upstream contributing basin connects to the public storm sewer line that traverses the site year peak flow is analyzed below to determine the maximum peak flow that the sum of upstrear onsite flows must match or be less than. This demonstrates that the development of the site w adversely impact downstream conditions for the 25-year storm event.

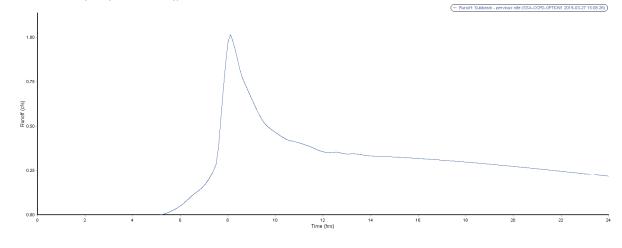
Hydrograph Analysis

Autodesk Storm and Sanitary Analysis 2018 - SCS Type 1A 24-hr storm distribution

			nunon Summary Lane
Time period		Element ID	UPSTREAM
From:	07/10/2018, 12:00:00 AM	Maximum Runoff (cfs)	2.99
To:	07/11/2018, 12:00:10 AM	Minimum Runoff (cfs)	0.00
		Event Mean Runoff (cfs)	0.67
Thresholds		Duration of Exceedances (hrs)	N/A
Exceedanc	ce: 0	Duration of Deficits (hrs)	N/A
Deficit:	0	Number of Exceedances	N/A
	I	Number of Deficits	N/A
Detention s	storage	Volume of Exceedance (ft [®])	N/A
Max flow:	0	Volume of Deficit (ft)	N/A
Max now.	P	Total Runoff (ft ^e)	58091.8
		Detention Storage (ft ^e)	N/A

UPSTREAM BASIN PEAK FLOW

2.99 CFS


Downstream Analysis Basin Calculations Pervious Site Basin Appendix E

Design criteria:

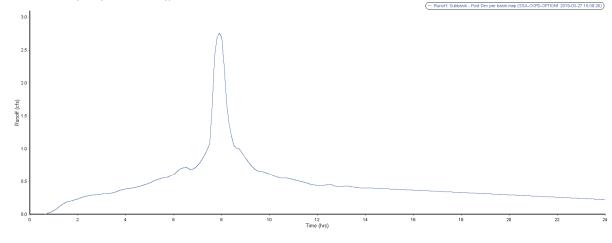
The site not part of the piped conveyance improvements is assumed to shed off the site across the open field to remain on the west side of the site. The model below represents the peak flow for this portion of the site

Hydrograph Analysis

Autodesk Storm and Sanitary Analysis 2018 - SCS Type 1A 24-hr storm distribution

	Runolf Summary Table						
Time perio							
		Element ID	pervious site				
From	07/10/2018, 12:00:00 AM	Maximum Runoff (cfs)	1.01				
To:	07/11/2018, 12:00:10 AM	Minimum Runoff (cfs)	0.00				
		Event Mean Runoff (cfs)	0.26				
Thresholds		Duration of Exceedances (hr:	ze) NA				
Exceedan	ce: 0	Duration of Deficits (hrs)	NA				
Deficit:	0	Number of Exceedances	N/A				
	1-	Number of Deficits	NA				
Detention	storage	Volume of Exceedance (fP)	NA				
Max flow:		Volume of Deficit (fP)	N/A				
max nuw.	19	Total Runoff (R)	22502.17				
		Detention Storage (1%)	NA				

PERVIOUS SITE BASIN PEAK FLOW 1.01 CFS


Downstream Analysis Basin Calculations Impervious Site Basin Appendix E

Design criteria:

The piped conveyance of impervious areas is modelled below. TOC is assumed to be 5-minutes, despite the presence of vegetated water quality facilities that could potentially increase this time. This presents a conservative (higher) peak flow runoff that must be managed by the detention facility prior to leaving the site.

Hydrograph Analysis

Autodesk Storm and Sanitary Analysis 2018 - SCS Type 1A 24-hr storm distribution

	Runoff Summary Table							
Time period		Element ID	Post: Dev per basin map					
From	07/10/2018, 12:00:00 AM	Maximum Runoff (cfs)	2.76					
Τα	07/11/2018, 12:00:10 AM	Minimum Runoff (cfs)	0.00					
		Event Mean Runoff (cfs)	0.46					
Thresholds-		Duration of Exceedances (hrs	Duration of Exceedances (Ins) N/A					
Exceedance	e: 0	Duration of Deficits (hrs)	N/A					
Deficit:	0	Number of Exceedances	N/A					
	I:	Number of Deficits	N/A					
-Detention st	torage	Volume of Exceedance (ft ⁹)						
Max flow:	0	Volume of Deficit (ft ^o)	N/A					
1103 1015	P	Total Runoff (ff)	39945.72					
		Detention Storage (ft ²)	N/A					

IMPERVIOUS SITE BASIN PEAK FLOW 2.76 CFS