OREGON CITY SCHOOL DISTRICT

MASTER PLAN

OREGON CITY HIGH SCHOOL AND TRANSPORTATION MAINTENANCE FACILITY CAMPUS

Exhibit G – Preliminary Storm Drain Detention & Water Quality Calculations

OCSD Transportation Facility

Oregon City, OR

Developer: Oregon City School District

J.O. SGL 14-070

November 3rd, 2014

PRELIMINARY STORM DRAIN DETENTION & WATER QUALITY CALCULATIONS

SISUL ENGINEERING

A Division of Sisul Enterprises, Inc. 375 Portland Avenue Gladstone, OR 97027 phone: (503) 657-0188

fax: (503) 657-5779

Narrative:

The site is currently undeveloped with one existing shed among a heavily wooded area. The majority of the undeveloped portion of the site is forest land. The property fall towards the northwest anywhere between 2-5%. The site is surrounded on the north by Clackamas Community College, on the east by Oregon City High School, on the south by housing and a future City park currently being master planned by the City Parks Department, and on the west by an undeveloped property.

The site is located in the Caufield Drainage Basin.

The site is proposed to be developed into a new Oregon City School District Transportation Facility that will replace the existing one. The site which is currently all pervious will become mostly impervious area after development. Stormwater detention and water quality facility for storm runoff will be provided by detention ponds to be located on the north side of the property. The water quality requirement for the City of Oregon City is to have a minimum 48-hour retention time for 1/3 of a 2 year storm event. All of these requirements will be met with a detention/water quality pond. Roof drainage will be piped into the on-site system and routed to the detention ponds. A geotechnical infiltration test and report is being prepared by GRI. There memorandum regarding the testing is included as a part of this report.

Detention Requirements:

2yr, 24-hour storm event must be controlled to 50% of the pre-developed runoff rate of a 2yr 24 hour storm event.

5yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 5yr 24-hour storm event.

25yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 10yr 24-hour storm event.

<u>Total Site Conditions & Design Values - Pre Development:</u> Area:

Total Area = 6.88 Acres
Pervious Area = 6.88 acres
Impervious Area = 0.00 acres

Existing Use: The site is currently undeveloped with one existing shed among a heavily wooded area. The majority of the undeveloped portion of the site is forest land.

<u>Soil Type:</u> This site has (1) soil type as identified by (Soil Survey Clackamas County Area, Oregon) (See Soil Survey Attachments)

Bornstedt silt loam 8B - Hydrologic Group 'C'

Runoff Curve Numbers: (per Table 4-3 MODIFIED CURVE NUMBERS, City of Oregon City Stormwater and Grading Design Standards)

Wood or forest land: established 2nd growth - Hydrologic Group 'C' => 78 Impervious Surfaces, AC, Roofs etc.-Hydrologic Group 'C' => 98

<u>Rainfall Distribution:</u> (per Table 4-1 TOTAL DEPTH, City of Oregon City Stormwater and Grading Design Standards)

2yr, 24-hour duration STD SCS Type 1A Storm => 2.6 inches 5yr, 24-hour duration STD SCS Type 1A Storm => 3.1 inches 10yr, 24-hour duration STD SCS Type 1A Storm => 3.4 inches

<u>Time of Concentration – Pre Developed:</u> (Design Values per Table 4-4 MANNING'S COEFFICIENTS/"K" FACTORS, City of Oregon City Stormwater and Grading Design Standards)

Sheet Flow:
$$T_1 = 0.42 (n_s L)^{0.8} (P_2)^{0.5} * (s_0)^{0.4}$$

 $L = 220 \text{ ft.}$
 $P_2 = 2.6 \text{ in.}$
 $S_0 = 0.0364 \text{ ft./ft.}$
 $n_s = 0.40$

Shallow Concentrated Flow:

$$T_1 = L$$
 $60*k*(S_0)^{0.5}$

$$L = 432 \text{ ft.}$$

 $S_0 = 0.0080 \text{ ft./ft.}$
 $k = 5$

_Total Time of Concentration: $T_c = T_1 + T_2$

$$T_1 = 0.42 (0.40*220)^{0.8}$$
 = 35.23 minutes $(2.6)^{0.5} * (0.0364)^{0.4}$

$$T_2 = 432$$
 = 16.10 minutes $60 \cdot 5 \cdot (0.0080)^{0.5}$

 $T_c = 35.23 + 16.10 = 51.33$ minutes

Pre Development Hydrographs:

The pre developed hydrographs will be generated using the Santa Barbara Urban Hydrograph (SBUH) Method. (KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division, HYDROGRAPH PROGRAMS Version 4.20)

The following pre-developed hydrographs have been broken up into two separate basins. Each basin will serve a detention pond on the northern part of the property. The basins will be broken into basin 'A' and basin 'B'. Refer to supporting pages to see separation of the basins on-site.

2 year Runoff Rate - Pre Development - Basin 'A'

```
********* 2-YEAR 24-HOUR STORM **** 2.60" TOTAL PRECIP. *******
```

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 4.15,78,0,0,51.33

DATA PRINT-OUT:

```
AREA (ACRES) PERVIOUS IMPERVIOUS TC (MINUTES)
A CN A CN
4.2 4.2 78.0 .0 .0 51.3

PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)
.34 8.17 12766
```

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070-2A.UND

5 year Runoff Rate - Pre Development - Basin 'A'

```
******** 5-YEAR 24-HOUR STORM **** 3.10" TOTAL PRECIP. *******
```

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 4.15,78,0,0,51.33

DATA PRINT-OUT:

```
AREA (ACRES) PERVIOUS IMPERVIOUS TC (MINUTES)

A CN A CN
4.2 4.2 78.0 .0 .0 51.3

PEAK-Q(CFS) T-PEAK (HRS) VOL (CU-FT)

.55 8.00 17942
```

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070-5A.UND

```
10 year Runoff Rate - Pre Development - Basin 'A'
  ************** S.C.S. TYPE-1A DISTRIBUTION **************
  ******** 10-YEAR 24-HOUR STORM **** 3.40" TOTAL PRECIP. *******
 ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1
 4.15,78,0,0,51.33
 DATA PRINT-OUT:
   AREA (ACRES)
               PERVIOUS
                          IMPERVIOUS
                                      TC (MINUTES)
                A CN
               4.2 78.0
                            .0
                                . 0
                                         51.3
   PEAK-Q(CFS) T-PEAK(HRS)
                            VOL (CU-FT)
       . 68
                  8.00
                              21254
 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
 14070-10A.UND
 2 year Runoff Rate - Pre Development - Basin 'B'
     ************** S.C.S. TYPE-1A DISTRIBUTION **************
 ******* 2-YEAR 24-HOUR STORM **** 2.60" TOTAL PRECIP. *******
 ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1
 2.73,78,0,0,51.33
DATA PRINT-OUT:
  AREA (ACRES)
             PERVIOUS IMPERVIOUS TC (MINUTES)
              A
                   CN
                               CN
      2.7
               2.7 78.0
                          .0
                                . 0
                                        51.3
  PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)
      .22
                 8.17
                               8398
ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
14070-2B.UND
5 year Runoff Rate - Pre Development - Basin 'B'
*************** S.C.S. TYPE-1A DISTRIBUTION ***************
******* 5-YEAR 24-HOUR STORM **** 3.10" TOTAL PRECIP. *******
             ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1
2.73,78,0,0,51.33
DATA PRINT-OUT:
              PERVIOUS IMPERVIOUS
 AREA (ACRES)
                                    TC (MINUTES)
                   CN
              2.7 78.0
                         .0
```

. 0

51.3

```
PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)

.36 8.00 11803
```

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070-5B.UND

10 year Runoff Rate - Pre Development - Basin 'B'

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 2.73,78,0,0,51.33

DATA PRINT-OUT:

ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070-10B.UND

Site Conditions & Design Values - Post Development:

Area: These calculations are for the area that drains into Detention Pond "A".

Total Area = 4.15 Acres

Total Area = 4.15acres
Pervious Area = 0.39 acres
Impervious Area = 3.76 acres

Area: These calculations are for the area that drains into Detention Pond "B".

Total Area = 2.73 Acres

Total Area = 2.73acres
Pervious Area = 0.33 acres
Impervious Area = 2.40 acres

Runoff Curve Numbers: (per Table 4-3 MODIFIED CURVE NUMBERS, City of Oregon City Stormwater and Grading Design Standards)

Wood or forest land: established 2nd growth - Hydrologic Group 'C' => 78 Impervious Surfaces, AC, Roofs etc.-Hydrologic Group 'C' => 98

<u>Rainfall Distribution:</u> (per Table 4-1 TOTAL DEPTH, City of Oregon City Stormwater and Grading Design Standards)

```
2yr, 24-hour duration STD SCS Type 1A Storm => 2.6 inches 5yr, 24-hour duration STD SCS Type 1A Storm => 3.1 inches 25yr, 24-hour duration STD SCS Type 1A Storm => 4.0 inches
```

Time of Concentration - Post Development:

Since a large portion of the site is impervious, the minimum time of concentration of 5 minutes will be used. Tc = 5 minutes

Post Developed Hydrographs:

The post developed hydrographs will be generated using the Santa Barbara Urban Hydrograph (SBUH) Method. (KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division, HYDROGRAPH PROGRAMS Version 4.20)

```
2 year Runoff Rate - Post Development - Basin 'A'
     2-YEAR 24-HOUR STORM **** 2.60" TOTAL PRECIP. *******
ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1
 .39,78,3.76,98,5
DATA PRINT-OUT:
  AREA (ACRES)
             PERVIOUS IMPERVIOUS
                                  TC (MINUTES)
             A CN A CN
          .4 78.0 3.8 98.0
                                     5.0
  PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)
     2.58
               7.67
                           33558
ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
14070-2A.DEV
5 year Runoff Rate - Post Development - Basin 'A'
5-YEAR 24-HOUR STORM **** 3.10" TOTAL PRECIP. *******
ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1
.39,78,3.76,98,5
DATA PRINT-OUT:
 AREA (ACRES)
            PERVIOUS
                      IMPERVIOUS
                                 TC (MINUTES)
                  CN
                            CN
```

.4 78.0 3.8 98.0 4.2 5.0 VOL(CU-FT) PEAK-Q(CFS) T-PEAK(HRS) <u>3.1</u>3 7.67 40842 ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070-5A.DEV 25 year Runoff Rate - Post Development - Basin 'A' ************ S.C.S. TYPE-1A DISTRIBUTION ******************* ****** 25-YEAR 24-HOUR STORM **** 4.00" TOTAL PRECIP. ******* ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 .39,78,3.76,98,5 DATA PRINT-OUT: AREA (ACRES) PERVIOUS IMPERVIOUS TC (MINUTES) CNCNA .4 78.0 3.8 98.0 4.2 5.0 PEAK-Q(CFS) T-PEAK (HRS) VOL(CU-FT) 4.12 7.67 54060 ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070-25A.DEV 2 year Runoff Rate - Post Development - Basin 'B' ______ ************* S.C.S. TYPE-1A DISTRIBUTION ***************** ****** 2-YEAR 24-HOUR STORM **** 2.60" TOTAL PRECIP. ******* ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 .33,78,2.4,98,5 DATA PRINT-OUT: AREA (ACRES) PERVIOUS IMPERVIOUS TC (MINUTES) CNΑ CN.3 78.0 2.4 98.0 5.0 2.7 PEAK-Q(CFS) T-PEAK (HRS) VOL (CU-FT) 7.67 21671 1.66

ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:

14070-2B.DEV

```
5 year Runoff Rate - Post Development - Basin 'B'
```

```
************* 5-YEAR 24-HOUR STORM **** 3.10" TOTAL PRECIP. *******
```

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 .33,78,2.4,98,5

DATA PRINT-OUT:

AREA (ACRES) PERVIOUS IMPERVIOUS TC (MINUTES)

A CN A CN
2.7 .3 78.0 2.4 98.0 5.0

PEAK-Q(CFS) T-PEAK (HRS) VOL (CU-FT)

2.02 7.67 26423

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070-5B.DEV

25 year Runoff Rate - Post Development - Basin 'B'

```
********* 25-YEAR 24-HOUR STORM **** 4.00" TOTAL PRECIP. *******
```

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 .33,78,2.4,98,5

DATA PRINT-OUT:

AREA (ACRES) PERVIOUS IMPERVIOUS TC (MINUTES)
A CN A CN
2.7 .3 78.0 2.4 98.0 5.0

PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)
2.67 7.67 35061

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070-25B.DEV

<u> Detention Area Routing – Basin 'A':</u>

The detention area will be 2.00 feet deep with 0.50 feet of dead storage, 1.00 feet of detention storage and 0.50 feet of freeboard during a 25 year storm event. The flow control structure for the detention pipe will have one orifice and an overflow riser. The attached spreadsheet shows the detention area routing data.

The routing will be performed using the Santa Barbara Urban Hydrograph (SBUH) Method. (KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division, HYDROGRAPH PROGRAMS Version 4.20)

RESERVOIR ROUTING INFLOW/OUTFLOW ROUTINE

SPECIFY [d:][path]filename[.ext] OF ROUTING DATA 14070A.TXT DISPLAY ROUTING DATA (Y or N)?

ROUTING DATA:

STAGE (FT)	DISCHARGE (CFS)	STORAGE (CU-FT)	PERM-AREA (SQ-FT)
.00	.04	10092.4	.0
.25	.05	15299.8	. 0
.50	.06	20615.9	. 0
.75	.07	26041.6	.0
1.00	.36	31577.9	. 0
1.25	2.47	37225.8	.0

AVERAGE PERM-RATE: .0 MINUTES/INCH

2 year Detention Routing:

ENTER [d:] [path] filename[.ext] OF COMPUTED HYDROGRAPH: 14070-2A.DEV

INFLOW/OUTFLOW ANALYSIS:

PEAK-INFLOW(CFS) PEAK-OUTFLOW(CFS) OUTFLOW-VOL(CU-FT) .17 19248 INITIAL-STAGE(FT) TIME-OF-PEAK(HRS) PEAK-STAGE-ELEV(FT)

24.00

.00

PEAK STORAGE: 27890 CU-FT

ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 1470-2A.PND

5 year Detention Routing:

ENTER [d:][path]filename[.ext] OF COMPUTED HYDROGRAPH: 14070-5A.DEV

INFLOW/OUTFLOW ANALYSIS:

PEAK-INFLOW(CFS) PEAK-OUTFLOW(CFS) OUTFLOW-VOL(CU-FT) .28 25982

INITIAL-STAGE (FT) TIME-OF-PEAK (HRS) PEAK-STAGE-ELEV (FT) .00 23.83 . 93

PEAK STORAGE: 29990 CU-FT

ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 1470-5A.PND

25 year Detention Routing:

ENTER [d:] [path] filename [.ext] OF COMPUTED HYDROGRAPH: 14070-25A.DEV

INFLOW/OUTFLOW ANALYSIS:

PEAK-INFLOW(CFS) PEAK-OUTFLOW(CFS) OUTFLOW-VOL(CU-FT)
4.12 .54 38952

INITIAL-STAGE(FT) TIME-OF-PEAK(HRS) PEAK-STAGE-ELEV(FT)
.00 14.50 1.02

PEAK STORAGE:

32060 CU-FT

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 1470-25A.PND

Detention Summary - Basin 'A':

The detention requirements are to reduce the following design storm events:

2yr, 24-hour storm event must be controlled to 50% of the pre-developed runoff rate of a 2yr 24 hour storm event.

5yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 5yr 24-hour storm event.

25yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 10yr 24-hour storm event.

The detention area will be 2.00 feet deep with 0.50 feet of dead storage, 1.00 feet of detention storage and 0.50 feet of freeboard during a 25 year storm event. The flow control structure will have one orifice and an overflow riser. The bottom orifice will be 1-1/2 inches in diameter

The following tables show that the detention requirements have been met.

Minimum Peak Rate Stormwater Runoff Control Requirements.

2yr, 24-hour storm event must be controlled to 50% of the pre-developed runoff rate of a 2yr 24 hour storm event.

2-year allowable release rate (1/2 of the 2 year pre dev. runoff)	2-year post development release rate
0.17 cfs	0.17 cfs

5yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 5yr 24-hour storm event.

5-year allowable	5-year post development
release rate	release rate

0.55 cfs	0.28 cfs
	A

25yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 10yr 24-hour storm event.

25-year allowable release rate	25-year post development release rate
0.68 cfs	0.54 cfs

Detention Area Routing - Basin 'B':

The detention area will be 3.25 feet deep with 0.50 feet of dead storage, 2.25 feet of detention storage and 0.50 feet of freeboard during a 25 year storm event. The flow control structure for the detention pipe will have one orifice and an overflow riser. The attached spreadsheet shows the detention area routing data.

The routing will be performed using the Santa Barbara Urban Hydrograph (SBUH) Method. (KING COUNTY DEPARTMENT OF PUBLIC WORKS Surface Water Management Division, HYDROGRAPH PROGRAMS Version 4.20)

RESERVOIR ROUTING INFLOW/OUTFLOW ROUTINE

```
SPECIFY [d:][path]filename[.ext] OF ROUTING DATA 14070B.TXT
DISPLAY ROUTING DATA (Y or N)?
Y
```

ROUTING DATA:

STAGE (FT)	DISCHARGE (CFS)	STORAGE (CU-FT)	PERM-AREA (SQ-FT)
.00	.03	2753.4	.0
.25	.04	4268.9	.0
.50	.04	5879.5	.0
.75	.05	7587.3	. 0
1.00	.05	9393.9	.0
1.25	.06	10926.4	.0
1.50	.06	12561.8	.0
1.75	.06	14676.8	.0
2.00	.07	16898.4	.0
2.25	.07	19228.6	.0
2.50	1.65	21669.3	.0
2.75	4.54	24222.1	. 0

AVERAGE PERM-RATE:

.0 MINUTES/INCH

2 year Detention Routing:

ENTER [d:][path]filename[.ext] OF COMPUTED HYDROGRAPH: 14070-2B.DEV

INFLOW/OUTFLOW ANALYSIS:

PEAK-INFLOW (CFS)

PEAK-OUTFLOW (CFS)

OUTFLOW-VOL (CU-FT)

1.66

<u>.07</u>

16154

INITIAL-STAGE (FT) TIME-OF-PEAK (HRS)

PEAK-STAGE-ELEV (FT)

24.00

2.04

PEAK STORAGE: 17230 CU-FT

ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 1470-2B.PND

5 year Detention Routing:

ENTER [d:] [path] filename [.ext] OF COMPUTED HYDROGRAPH: 14070-5B.DEV

INFLOW/OUTFLOW ANALYSIS:

2.02

PEAK-INFLOW(CFS) PEAK-OUTFLOW(CFS)

OUTFLOW-VOL (CU-FT) 19757

.20

INITIAL-STAGE (FT) TIME-OF-PEAK (HRS) 23.33

PEAK-STAGE-ELEV(FT)

2.27

PEAK STORAGE: 19420 CU-FT

ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 1470-5B.PND

25 year Detention Routing:

ENTER [d:] [path] filename [.ext] OF COMPUTED HYDROGRAPH: 14070-25B.DEV

INFLOW/OUTFLOW ANALYSIS:

PEAK-INFLOW(CFS) PEAK-OUTFLOW(CFS) OUTFLOW-VOL(CU-FT)

2.67

.44

28301

INITIAL-STAGE (FT) TIME-OF-PEAK (HRS) PEAK-STAGE-ELEV (FT)

.00

12.50

PEAK STORAGE: 19790 CU-FT

ENTER [d:] [path] filename [.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 1470-25B.PND

<u>Detention Summary – Basin 'B':</u>

The detention requirements are to reduce the following design storm events:

2yr, 24-hour storm event must be controlled to 50% of the pre-developed runoff rate of a 2yr 24 hour storm event.

5yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 5yr 24-hour storm event.

25yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 10yr 24-hour storm event.

The detention area will be 3.25 feet deep with 0.50 feet of dead storage, 2.25 feet of detention storage and 0.50 feet of freeboard during a 25 year storm event. The flow control structure will have one orifice and an overflow riser. The orifice will be 1-1/4 inches in diameter.

The following tables show that the detention requirements have been met.

Minimum Peak Rate Stormwater Runoff Control Requirements.

2yr, 24-hour storm event must be controlled to 50% of the pre-developed runoff rate of a 2yr 24 hour storm event.

2-year allowable release rate (1/2 of the 2 year pre dev. runoff)	2-year post development release rate
0.11 cfs	0.07 cfs

5yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 5yr 24-hour storm event.

5-year allowable release rate	5-year post development release rate		
0.36 cfs	0.20 cfs		

25yr, 24-hour storm event must be controlled to the pre-developed runoff rate of a 10yr 24-hour storm event.

25-year allowable release rate	25-year post development release rate		
0.45 cfs	0.44 cfs		

Water Quality Analysis - Basin 'A':

The water quality requirements will be met by retaining the water quality storm event is 1/3 of a 2 year storm event for a minimum of 48 hours.

Water Quality - 1/3 of a 2 Year Storm Event - Basin 'A':

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 0.39,78,3.76,98,5

DATA PRINT-OUT:

AREA (ACRES) PERVIOUS IMPERVIOUS TC (MINUTES)

A CN A CN
4.2 .4 78.0 3.8 98.0 5.0

PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)
.72 7.67 9124

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070A.WQ

Water Quality - 1/3 of a 2 Year Storm Event—Basin 'A':

ENTER [d:][path]filename[.ext] OF COMPUTED HYDROGRAPH: 14070A.WQ

INFLOW/OUTFLOW ANALYSIS:

PEAK-INFLOW(CFS) PEAK-OUTFLOW(CFS) OUTFLOW-VOL(CU-FT)
.72 .04 9649

INITIAL-STAGE(FT) TIME-OF-PEAK(HRS) PEAK-STAGE-ELEV(FT)
.00 .00 .00

PEAK STORAGE: 5900 CU-FT

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070A-WO

Water Quality Summary – Basin 'A':

The hydraulic residence time for the water quality storm is 62.50 hours. This meets the required 48 hour hydraulic residence time.

Water Quality Analysis - Basin 'B':

The water quality requirements will be met by retaining the water quality storm event is 1/3 of a 2 year storm event for a minimum of 48 hours.

Water Quality - 1/3 of a 2 Year Storm Event - Basin 'B':

```
******** 1-YEAR 24-HOUR STORM **** .87" TOTAL PRECIP. *******
```

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 .33,78,2.4,98,5

DATA PRINT-OUT:

```
AREA (ACRES) PERVIOUS IMPERVIOUS TC (MINUTES)

A CN A CN
2.7 .3 78.0 2.4 98.0 5.0

PEAK-Q(CFS) T-PEAK (HRS) VOL (CU-FT)
.46 7.67 5832
```

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070-1B.WQ

Water Quality - 1/3 of a 2 Year Storm Event-Basin 'B':

ENTER [d:][path]filename[.ext] OF COMPUTED HYDROGRAPH: 14070B.WQ

INFLOW/OUTFLOW ANALYSIS:

```
PEAK-INFLOW(CFS) PEAK-OUTFLOW(CFS) OUTFLOW-VOL(CU-FT)
.46 .03 6130

INITIAL-STAGE(FT) TIME-OF-PEAK(HRS) PEAK-STAGE-ELEV(FT)
.00 24.00 .12
```

PEAK STORAGE: 3460 CU-FT

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: 14070B-WQ

Water Quality Summary:

The hydraulic residence time for the water quality storm is 56.00 hours. This meets the required 48 hour hydraulic residence time.

Extended Project overview and Description:

The site will also include an extension of Meyers Road westerly. A future right-of-way width of 92' is being proposed though only 56' of the 92' will be constructed. Stormwater runoff will have to meet storm drain requirements.

A water quality and detention swale will be used to meet the storm drain requirements. The swales will be located on the north side of the road. The road will sheet flow towards the swale and enter through curb cuts in the curb. The runoff from the road will drain into a field inlet that will be tied into a storm drain system and will drain to an existing wetland northerly.

Areas:

Swale 'A'

Impervious Area

Road & Sidewalk Area

= 11,263 sf

Total Impervious

= 11,263 sf

Swale 'B'

Impervious Area

Road & Sidewalk Area

= 9,661 sf

Total Impervious

= 9,661 sf

Swale 'C'

Impervious Area

Road & Sidewalk Area

= 3,894 sf

Total Impervious

= 3.894 sf

<u>Methodology:</u>

Existing Drainage of the site:

The site currently undeveloped.

Proposed Drainage of the site:

The developed road extension will sheet flow towards the swale and enter through curb cuts in the curb. The runoff will drain into a field inlet that will be tied into a storm drain system and will drain to an existing wetland northerly.

Infiltration results:

With a flow through planter being used for water quality and detention on the site, an infiltration rate of 2 inches per hour was used for calculations.

Stormwater Hierarchy Category justification:

Hierarchy category 1, requires total on-site infiltration with vegetated infiltration facilities. Category 1 is not possible due to the low infiltration rate of 0.1 inches per hour.

Hierarchy category 2, requires total on-site infiltration with vegetated infiltration facilities that overflow to subsurface infiltration facilities. Category 2 is not possible due to the low infiltration rate of 0.1 inches per hour.

Hierarchy category 3, requires on-site detention with vegetated facilities that overflow to a drainageway, river or storm-only pipe. Category 3 will be used with a water quality and detention swale that drains into a field inlet that will be tied into a storm drain system and will drain to an existing wetland northerly.

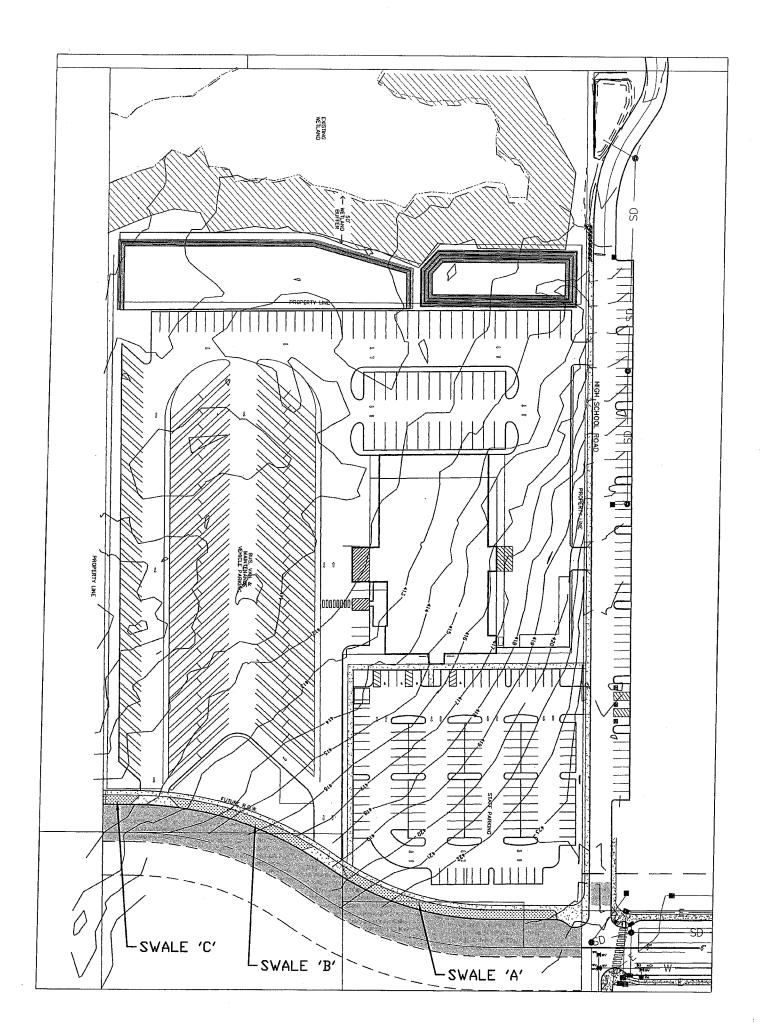
Analysis:

Design Assumptions:

- 1.) The PAC calculator will be used to size the infiltration facilities.
- 2.) The time of concentration for post development is 5 minutes.
- 3.) A CN of 98 will be used for determination of post development peak flow.

Escape Route:

Each basin will drain into a field inlet that will then be drained into storm drain system.


PAC Calculator Calculation Description:

The PAC Calculator will be used to size the water quality and detention swales. The planter will have 9" of surface storage and 5"" of freeboard. The growing medium will be 18" deep. The landscape width of the facilities are 9' wide and the bottom width of the swales are a 2' wide.

Engineering Conclusions

The proposed stormwater facilities has been designed in accordance with the 2014 Storm Water Management Manual. The storm water facilities have been designed to meet flow control and pollution control requirements according to the PAC Calculator. See the attached PAC calculations. With each planter meeting the criteria required in the PAC Calculator, the swales therefore meet the standards.

SUPPORTING PAGES

Presumptive Approach Calculator ver. 1.2

Catchment Data

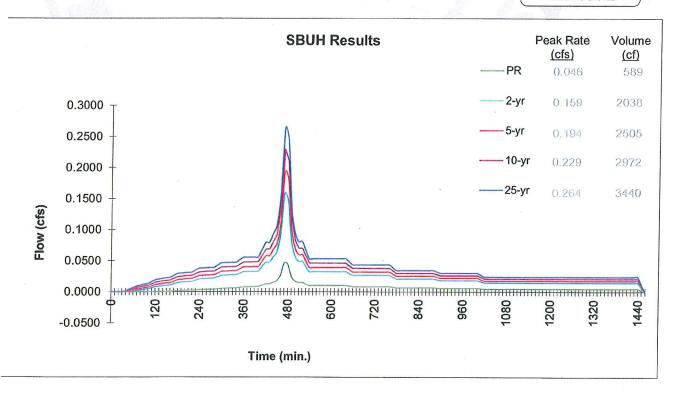
Project Name: Project Address: **OCSD Transportation Facility**

Oregon City School District Oregon City, OR 97045

Designer:

Company:

JVM Sisul Engineering Catchment ID: A Date: 11/04/14


Run Time

Permit Number: 0

11/4/2014 1:43:59 PM

Catchment ID	А	411820	
Ca	itchment Are		
Impervious Area	11,263	SF	
Impervious Area	0.26	ac	
Impervious Area Curve Number, CN _{imp}	98		
Time of Concentration, Tc, minutes	5 r	nin.	•
Site Soils & Infiltration Testing Data			
Infiltration Testing Procedure: Open Pit F	alling Head		
Native Soil Field Tested Infiltration Rate (I _{test}):	2 ii	n/hr	
Bottom of Facility Meets Required Separation From			
High Groundwater Per BES SWMM Section 1.4:	Yes		
Correction Factor Component			
CF _{test} (ranges from 1 to 3)	2	ý i	
Design Infiltration Rates			
I _{dsgn} for Native (I _{test} / CF _{test}):	1.00 ir	n/hr	
I _{dsan} for Imported Growing Medium:	2.00 ir	n/hr	

Execute SBUH Calculations

Printed: 11/4/2014 1:44 PM

Presumptive Approach Calculator ver. 1.2

Catchment ID: A

Run Time

11/4/2014 1 43.59 PM

Project Name: OCSD Transportation Facility

Catchment ID:

Date:

11/4/2014

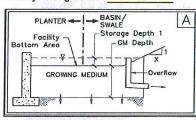
Instructions:

- 1. Identify which Stormwater Hierarchy Category the facility.
- 2. Select Facility Type.
- Identify facility shape of surface facility to more accurately estimate surface volume, except for Swales and sloped planters that use the PAC Sloped Facility Worksheet to enter data.
- 4. Select type of facility configuration.
- 5. Complete data entry for all highlighted cells.

Catchment facility will meet Hierarchy Category:

3

Goal Summary:


Hierarchy Category	SWMM Requirement	RESULTS box below needs to display	
	333317 Requirement	Pollution Reduction as a	10-yr (aka disposal) as a
3	Off-site flow to drainageway, river, or storm-only pipe system.	PASS	N/A

Facility Type = Swale

Facility Configuration:

Refer to Sloped Facility Worksheet and enter Variable Parameters

Max. Rock Stor.
Bottom Area
Per Swale Dims

DATA FOR ABOVE GRADE STORAGE COMPONENT

Infiltration Area = 356 sf Surface Capacity Volume = 204.9 cf
 BELOW GRADE STORAGE

 Rock Storage Bottom Area =
 356

 Rock Storage Depth =
 0

Growing Medium Depth = 18 in Freeboard Depth = N/A in

Surface Capacity at Depth 1 = 205 cf
Infiltration Area at 75% Depth1 = -24 SF
GM Design Infiltration Rate = 2.00 in/hr

Infiltration Capacity = 0.016

Rock Storage Capacity = ____ o ___ cf

Native Design Infiltration Rate = 1.00 in/hr
Infiltration Capacity = 0.008 cfs

Native Infiltration Rate Used in P/

| Coverflow | Volume | Pass | Overflow | Volume | Pass | Overflow | Volume | Pass | Overflow | Overflow | Pass | Overflo

FACILITY FACTS

Total Facility Area Including Freeboard = 2,097 SF
Sizing Ratio (Total Facility Area / Catchment Area) = 0.186

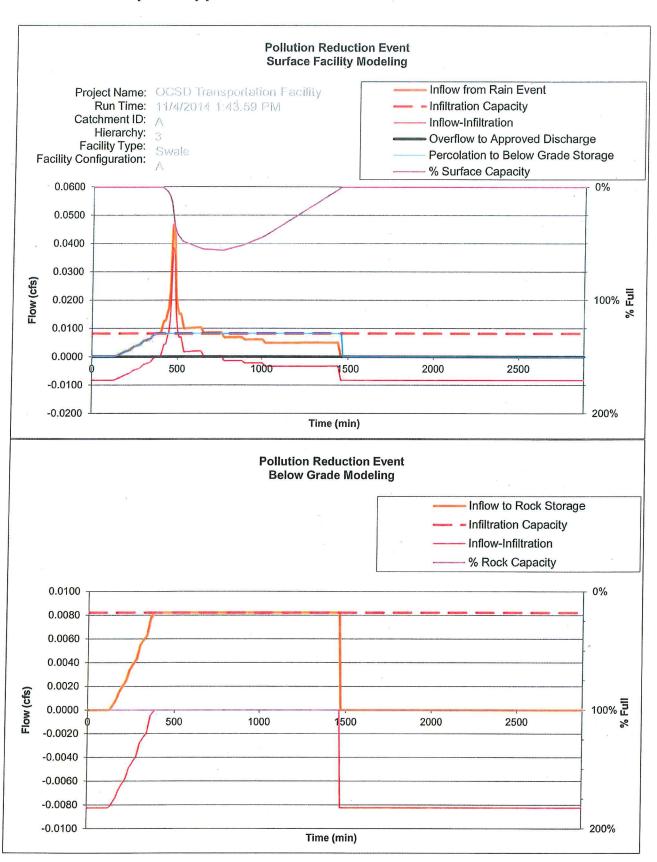
Presumptive Approach Calculator Ver 1.2

Project Name: OCSD Transportation Facility

Data tab Instructions:

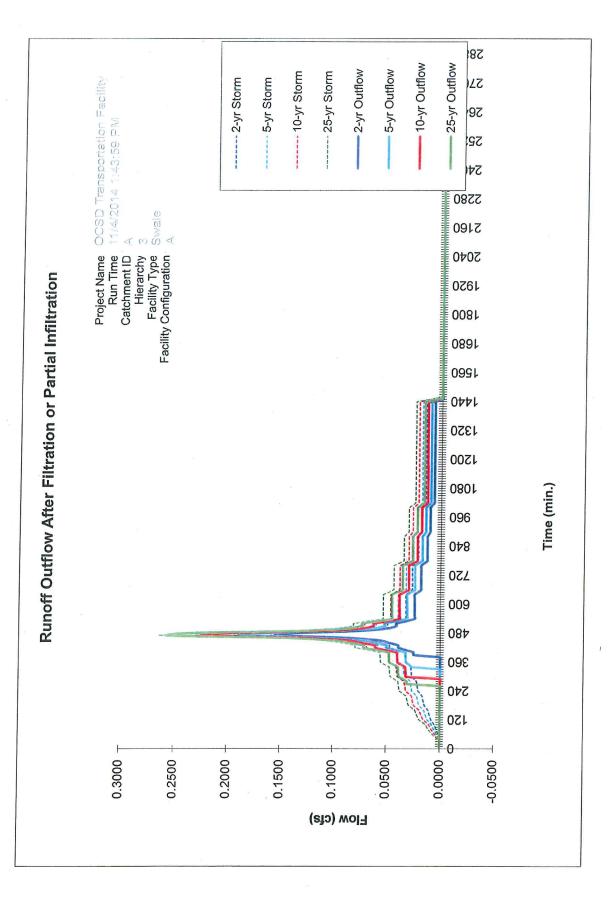
National of the property of the property of the property of the property of the parameters in the Data Entry table below.

sign	
ly De	
acili	
2	
cted	
sele	
ation	
ligura	
S	
<u>}</u>	
r g	
Ö 88	
oas	
var _y	
200	
Ì	
<u> </u>	
able	
pplic	
Jer a	
lo	
are no longer at	
at are	
=	
eration	
US :	
evio	
he pr	
by t	
tered t	
e e	
oeen	
ave	
ay h	
hat m	
₹ ÷	
mete	
oarai	
i A	
Tac.	
ete all	
Dele	
Ņ	


Run Time

11/4/2014

Date:


facility segment with warning message not fully utilized. Create shorter facility segments to increase surface storage Catchment ID: A Rock Storage Vrock (ct) Rock Storage Parameters Rock Storage Bottom Area (st) Rock Storage I Length Œ capacity and infiltration area A A 23%. (st) Error Messages Wtop-up75% 75% of Max. Upstream Top Width Warning Warning Warning (£ Wtop-ds75% Downstream Top Width 75% of Max. 75% of Max.
Adjusted
Length if
Dup75% = 0 Rock Void Ratio > Rock Storage Parameters Rock Storage Rock Storage Width Depth (inches) (inches) Drock Depth 3= 75% of Max. Downstream Depth Wrock (inches) E Wlandscal Œ g Upstream Cross-sectional Area Downstream Depth (inches) Spa (st) Side Slope Left Depth 2= X_{left}:1 A 3.1.9 3.3.19 3 (st) Side Slope Right X_{right}:1 W top-transfer of the contract **Bottom Width** Downstream Top Width Wbottom £ Œ Longitudinal Facility Slope (inches) (fl/fl) D 649 S Downstream Check Dam Length Adjusted Length if $D_{up} = 0$ 123 July 123 2.33 (H) Adjusted Length of facility segment Length of facility segment 77.67 77.67 77.67 76.51 Œ Œ Project Name: Worksheet Calculations Parameters Facility Segment Facility Segment 012244674860 - 2 2 4 5 9 7 8 9 9 7 7 7 7 7 9 7 8 9 9 9 Data Entry Parameters

Printed: 11/4/2014 1:44 PM

Printed: 11/4/2014 1:44 PM

BES - Presumptive Approach Calculator - Ver 1.2

O THE STATE OF
1007

Presumptive Approach Calculator ver. 1.2

Catchment Data

Project Name: Project Address:

OCSD Transportation Facility

Oregon City School District

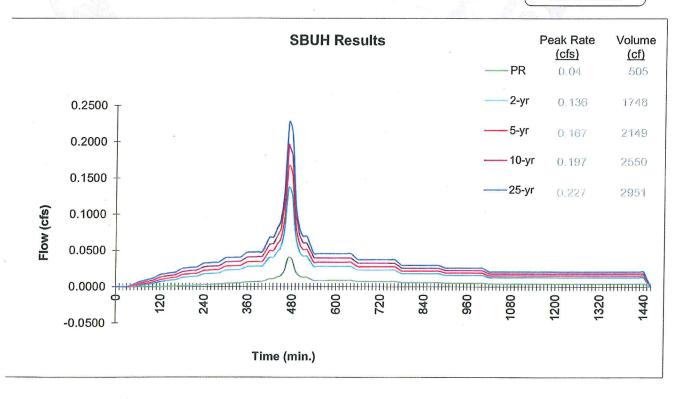
Oregon City, OR 97045

Designer:

JVM

Company: Sisul Engineering

Catchment ID: B


Date: 11/04/14

Permit Number: 0

Run Time 11/4/2014 1:44:53 PM

Catchment ID	В		
	atchment A		
Impervious Area	9,661	SF	
Impervious Area	0.22	ac	
Impervious Area Curve Number, CN _{imp}	98		
Time of Concentration, Tc, minutes		min.	
Site Soils & Infiltration Testing Data			
Infiltration Testing Procedure: Open Pit	Falling Head		
Native Soil Field Tested Infiltration Rate (Itest):	2	in/hr	
Bottom of Facility Meets Required Separation From		1	
High Groundwater Per BES SWMM Section 1.4:	Yes		
Correction Factor Component			
CF _{test} (ranges from 1 to 3)	2	+ 7 7	
Design Infiltration Rates		•	
I _{dsgn} for Native (I _{test} / CF _{test}):	1.00	in/hr	
I _{dsan} for Imported Growing Medium:	2.00	in/hr	

Execute SBUH Calculations

Printed: 11/4/2014 1:45 PM

Presumptive Approach Calculator ver. 1.2

Catchment ID:

Run	Time	

B

11/4/2014 1.48.48 PM

Project Name: OCSD Transportation Facility

Catchment ID:

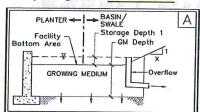
Date:

11/4/2014

Instructions:

- 1. Identify which Stormwater Hierarchy Category the facility.
- 2. Select Facility Type.
- 3. Identify facility shape of surface facility to more accurately estimate surface volume, except for Swales and sloped planters that use the PAC Sloped Facility Worksheet to enter data.
- 4. Select type of facility configuration.
- 5. Complete data entry for all highlighted cells.

Catchment facility will meet Hierarchy Category:


Goal Summary:

Hierarchy Category SWMM Requirement	SWMM Requirement	RESULTS box below needs to display		
	•	Pollution Reduction as a	10-yr (aka disposal) as a	
3	Off-site flow to drainageway, river, or storm-only pipe system.	PASS	NΑ	

Facility Type = Swale

Facility Configuration:

Worksheet and enter Variable Parameters

DATA FOR ABOVE GRADE STORAGE COMPONENT

Refer to Sloped Facility

Infiltration Area = 267 Surface Capacity Volume = 153.9 cf

BELOW GRADE STORAGE Rock Storage Bottom Area = Rock Storage Depth =

Calculation Guide Max. Rock Stor. Bottom Area Per Swale Dims

Growing Medium Depth = Freeboard Depth =

Surface Capacity at Depth 1 = 154 cf

Infiltration Area at 75% Depth1 = SF -18 GM Design Infiltration Rate = 2.00

Infiltration Capacity = 0.012 Rock Storage Capacity =

Native Design Infiltration Rate = 1.00 in/hr Infiltration Capacity = 0.006 cfs

Native Infiltration Rate Used in P/

Overflow RESULTS Run PAC Reduction PASS 0 CF 78% Surf. Cap. Used Output File Peak cfs 0.130 0.160 0.190 0.220

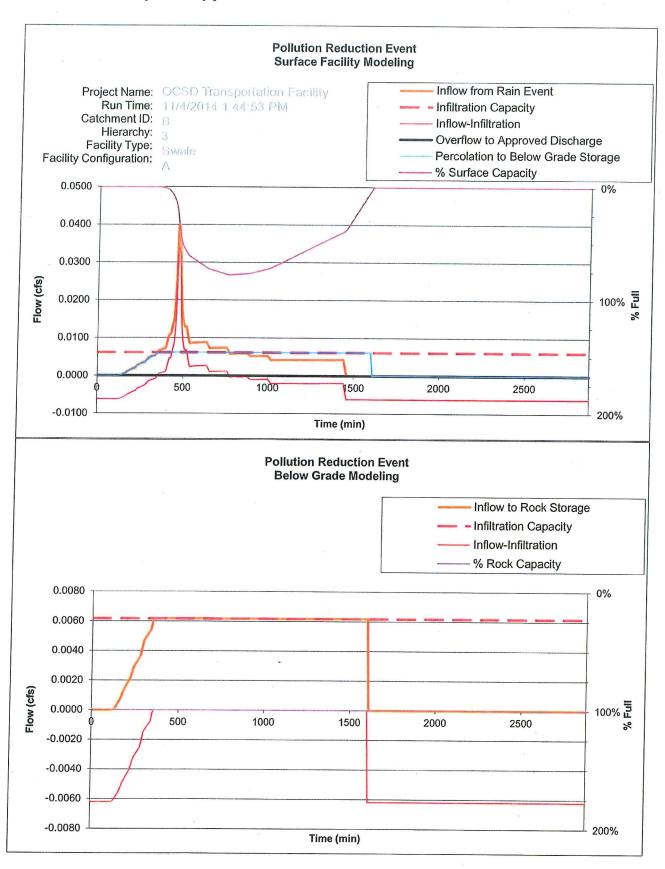
FACILITY FACTS Total Facility Area Including Freeboard = 1,350 SF Sizing Ratio (Total Facility Area / Catchment Area) =

tab.

Presumptive Approach Calculator Ver 1.2

Instructions:

1. Refer to facility graphics on the Graphics tab, then fill in all relevant facility param


Facility Configuration selected on Facility Design Data	Run Time 11/4/2014 1,44-53 P
ata entry cells vary based on	
ition that are no longer applicable.	. + + C
Delete all facility parameters that may have been entered by the previous iteration that are no longer	Project Name: OCSD Transportation Facility

facility segment with warning message not fully utilized. Create shorter facility segments to increase surface storage Catchment ID: B G Rock Storage Parameters Rock Storage Bottom Area (st) Rock Storage € capacity and infiltration area. (st) 888 Error Messages 75% of Max. Upstream Top Width Warning Warning Ξ 11/4/2014 75% of Max. Downstream Top Width Œ 75% of Max.
Adjusted
Length if
Dup75% = 0 Rock Void Ratio -adjust3 24.14 24. > Rock Storage Parameters Date: Rock Storage Rock Storage Width Depth 75% of Max. Upstream Depth (inches) (inches) Depth 3= 75% of Max. Downstream Depth Wrock (inches) Œ Landscape Width Wlandscar Vsurface € <u>G</u> Upstream Cross-sectional Area Downstream Depth (inches) Dds Downstream Cross-sectional Area so Depth 2= Side Slope Left X_{len}:1 (st) Side Slope Right X_{right}:1 £ Bottom Width Wbottom Downstream Top Width Longitudinal Facility Slope (ff/ft) S Downstream Check Dam Length Adjusted Length if $D_{up} = 0$ € Œ Adjusted Length of facility segment Length of facility segment Legment 50 50 50 50 Œ Ê Project Name: Worksheet Calculations Parameters Facility Segment Facility Segment Data Entry Parameters

undace @ Depth1

Printed: 11/4/2014 1:45 PM

00000000

Printed: 11/4/2014 1:45 PM

BES - Presumptive Approach Calculator - Ver 1.2

Presumptive Approach Calculator ver. 1.2

Catchment Data

Project Name:

OCSD Transportation Facility

Project Address:

Oregon City School District

Oregon City, OR 97045

Designer:

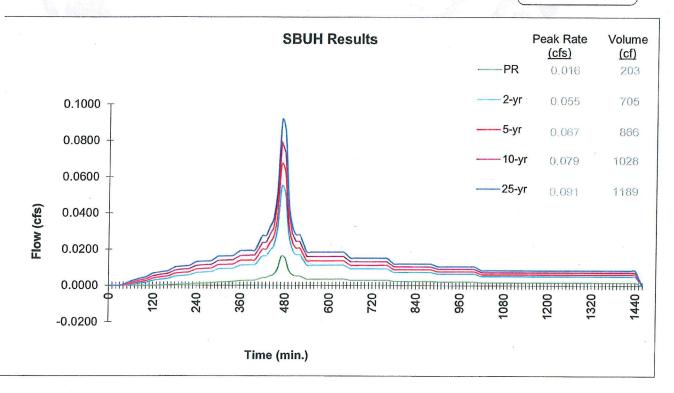
JVN

Company:

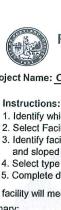
Sisul Engineering

Catchment ID: C

Date: 11/04/14


Permit Number: 0

Run Time


11/4/2014 1:45:58 PM

Catchment ID	C	1987	
Ca	tchment Are	a	
Impervious Area	3,894	SF	
Impervious Area	0.09	ac	
Impervious Area Curve Number, CN _{imp}	98		
Time of Concentration, Tc, minutes	5 r	min.	
Site Soils & Infiltration Testing Data			
Infiltration Testing Procedure: Open Pit F	alling Head		
Native Soil Field Tested Infiltration Rate (I _{test}):	2 i	n/hr	
Bottom of Facility Meets Required Separation From			
High Groundwater Per BES SWMM Section 1.4:	Yes		
Correction Factor Component			
CF _{test} (ranges from 1 to 3)	2	4. 4	
Design Infiltration Rates			
I _{dsgn} for Native (I _{test} / CF _{test}):	1.00 ir	n/hr	
I _{dsgn} for Imported Growing Medium:	2.00 ir	n/hr	

Execute SBUH Calculations

Printed: 11/4/2014 1:46 PM

Presumptive Approach Calculator ver. 1.2

Catchment ID:

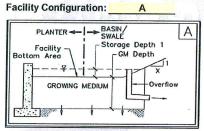
Run Time

11/4/2014

Project Name: OCSD Transportation Facility	Catchment ID:	С	Date:

- 1. Identify which Stormwater Hierarchy Category the facility.
- 2. Select Facility Type.
- 3. Identify facility shape of surface facility to more accurately estimate surface volume, except for Swales and sloped planters that use the PAC Sloped Facility Worksheet to enter data.
- 4. Select type of facility configuration.
- 5. Complete data entry for all highlighted cells.

Catchment facility will meet Hierarchy Category:


Goal Summary:

Hierarchy	SWMM Requirement	RESULTS box below needs to display		
Category	SVVIII REQUIREMENT	Pollution Reduction as a	10-yr (aka disposal) as a	
3	Off-site flow to drainageway, river, or storm-only pipe system.	PASS	N/A	

Facility Type = Swale

Refer to Sloped Facility Worksheet and enter Variable Parameters

BELOW GRADE STORAGE

Rock Storage Bottom Area = Rock Storage Depth =

Calculation Guide Max. Rock Stor. **Bottom Area** Per Swale Dims

Infiltration Area = Surface Capacity Volume = 56.0

Growing Medium Depth =

DATA FOR ABOVE GRADE STORAGE COMPONENT

104 sf

Freeboard Depth = N/A Surface Capacity at Depth 1 =

Infiltration Area at 75% Depth1 = -9 SF GM Design Infiltration Rate = 2.00 in/hr

Infiltration Capacity = 0.005 Rock Storage Capacity =

Native Design Infiltration Rate = 1.00 Infiltration Capacity = 0.002 cfs

Native Infiltration Rate Used in P/

Overflow RESULTS Volume Run PAC Reduction PASS 0 CF 90% _ Surf. Cap. Used Output File 2-yr 5-yr 0.053 0.077 Peak cfs 0.065 0.089

FACILITY FACTS

Total Facility Area Including Freeboard = Sizing Ratio (Total Facility Area / Catchment Area) =

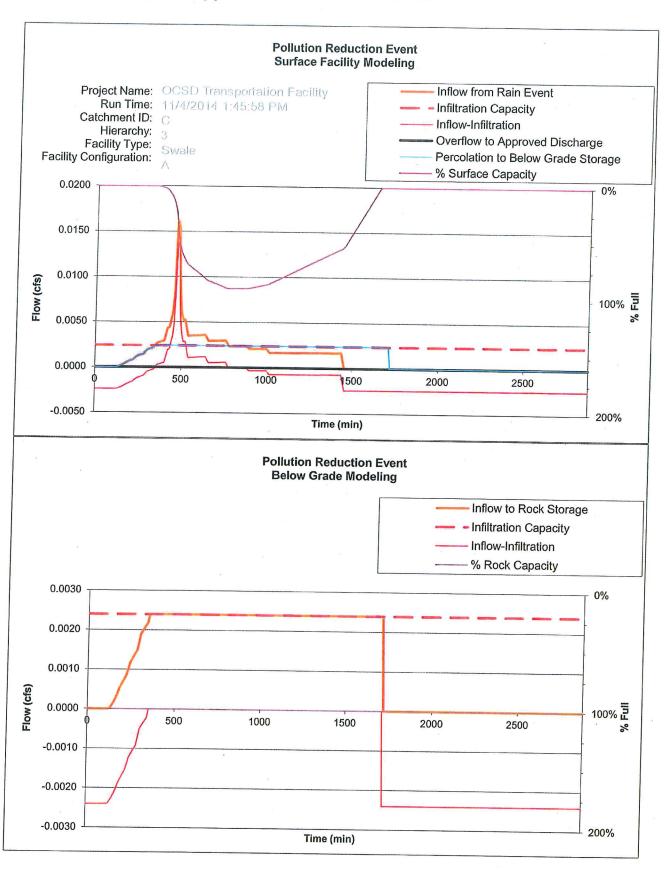
297 SF 0.076

Printed: 11/4/2014 1:48 PM

Presumptive Approach Calculator Ver 1.2

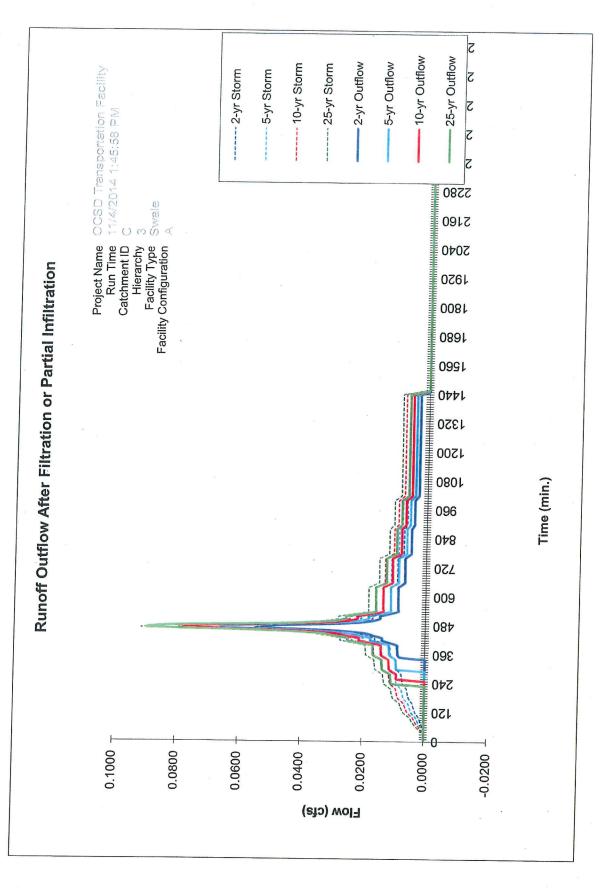
Project Name: OCSD Transportation Facility

Instructions:
1. Refer to facility graphics on the Graphics tab, then fill in all relevant facility parameters in the Data Entry table below. Data entry cells vary based on Facility Configuration selected on Facility Design Data tab.
2. Delete all facility parameters that may have been entered by the previous iteration that are no longer applicable.


Run Time

Catchment ID: C Vrock (ct) 0000000000000 Rock Storage Parameters Rock Storage (st) 104 Rock Storage £ (st) A75% 0 4 Error Messages Wtop-up75% 75% of Max. Upstream Top Width £ lownstream Top Width 75% of Max. 6.00 Rock Void Ratio 75% of Max. Adjusted Length if > Rock Storage Parameters Date: Rock Storage Rock Storage Width Depth (inches) (inches) 0 Depth 3= Wrock 75% of Max wnstrean Depth (inches) 0.00 £ Wlandscape Landscape Width € G Downstream Depth (inches) o o (st) Downstream Cross-sectional Area Side Slope Left Depth 2= X_{left}:1 (st) Side Slope Right X_{right}:1 W_{top-up} 45.50 Œ Downstream Top Width Wbottom £ Longitudinal Facility Stope (ft/ft) $\begin{array}{c} D_{cg} \\ 1.08 \\ 0.00 \\$ S Downstream Check Dam Length Adjust2 N.A.A. N.A. N € £ Length of facility segment Adjusted Length of facility segment Œ £ Project Name: Worksheet Calculations Parameters Facility Segment Facility Segment Data Entry Parameters

@ Depth1


Printed: 11/4/2014 1:46 PM

Printed: 11/4/2014 1:46 PM

BES - Presumptive Approach Calculator - Ver 1.2

DETENTION POND ROUTING DA	NO NO	ID ROU	TING	DATA								-			
OCSD Transportation Facility (SGL14-070)	tion Facility	(SGL14-070)													
THE RESERVE THE PROPERTY OF TH															
	Orifice #	Orifice #1 Diameter:	1 1/4	inches	Overflow	Overflow Disear Dise									
	Orifice #	Orifice #1 Elevation:	0.00	feet	Overflov	Overflow elevation:	275	Inches							
	Outice #	Orifice #2 Diameter:	0	inches							-				
	Driftee #	Orifice #2 Elevation:	0.00	feet	Infilt	Infiltration Rate:	0.0	in/hr =	0.00000000	cfs					
	Orifice #	Orifice #3 Elevation:	0.00	feet								\dagger			
	B	ပ	۵	<u> </u>	i.	ဖ	1	-	-						
		j	Surface	Ш	Orifice #1	Orifice #2	Orifice #3	Overflow	Actual						
	Stage	Elevation	Area	Volume	Discharge	Discharge	Discharge		Discharge		1				
	,		(sd.ft)	(cu.ft.)	(cfs)				(cls)						
	-	0.00	5143	0	0.000	0.000	0.000	0.000	Г	<= Orifice Outflow		9	0000	000	9
Wat. Quality =>	1 60	0.50	5874	1331	0.021	0.000	0.000	0.000	П			1.25	0.000	12210	0.00
& Detention	4	0.75	6250	4269	0.030	0000	0.000	0.000	0.030			0.50	0.030	2753.4	000
Storage	5	1.00	6635	5880	0.037	0000	0.000	0.000	0.037		0	7.75	0.037	4268.9	000
	9	1.25	7027	7587	0.047	0000	0000	0.000	0.042			00.	0.042	5879.5	000
	7	1.50	7426	9394	0.052	0000		0000	0.047			.25	0.047	7587.3	0.00
	8	1.75	4834	10926	0.056	000.0	0000	0.000	0.052			20	0.052	9393.9	0.00
	6	2.00	8249	12562	0.060	0000	2000	0000	9000			1.75	0.056	10926.4	0.00
	10	2.25	8671	14677	0.064	0000	0000	0.000	0.000		2	00.	0.060	12561.8	0.00
	11	2.50	9102	16898	0.067	0.000	0000	0000	0.004		2	.25	0.064	14676.8	0.00
	12	2.75	9540	19229	0.070	0000	0000	0000	0.00		2	22	0.067	16898.4	0.00
	13	3.00	9985	21669	0.073	0.000	0.000	1.579	1,652		7	2.75	0.070	19228.6	0.00
	14	3.25	10438	24222	0.076	0000	0000	4 465	1.032		8	8	1.652	21669.3	0.00
									710.1		69	.25	4.542	24222.1	0.00
											.				
															A STATE OF THE STA
							1								
												+			
	В	Stage Number													
		Water Surface Elevation,	Elevation.												
	۵	Water Surface Area @ given El	Area @ give	in Elevation											
		Storage Volume = [(Average Ar	e = [(Averag	e Area) x (d Fi	avation)] + Pra	ea) x (d Flevation)1 + Previous Votume									
					T. Pione	avious vointil									
	ORIFCE	$Q = 0.62 \times (area) \times (2 \times g \times h)^{4/2}$	3) x (2 x g x	h) ^{J/2}				+							
	ıı	Q = Orifice Eq.							+						
		Q = Orifice Eq.							+						
	ı	Q = Orifice Eq.													
	-	Overflow Riser as a Weir Q = 2.68 x L x H ¹²	as a Weir C	1=2.68×L×F	4/2										
				L = 2*pi*r											
	5	F+G+H+1								1		+	1		
												_	_		

MAP LEGEND

Spoil Area			Very Stony Spot	Wet Spot	○ Other	Special Line Features	Water Features	Streams and Canals	Transportation	+ Rails	Interstate Highways	US Routes	Major Doods	l ocal Roads	Background	Aerial Photography		
Area of Interest (AOI)	Area of Interest (AOI)		Soil Map Unit Polygons	Soil Map Unit Lines	Soil Map Unit Points	Special Point Features	Blowout Wate	Borrow Pit	Clay Spot	the short	Closed Depression	Gravel Pit	Gravelly Spot	Landfill	Lava Flow Back	Marsh or swamp	Mine or Quarry	Miscellaneous Water
Area of Int		Soils		1		Special	9	DC) <u>}</u>	ž	0	溪	**	0	40854	训	(k	0

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Natural Resources Conservation Service Source of Map:

Albers equal-area conic projection, should be used if more accurate Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Clackamas County Area, Oregon Version 9, Sep 19, 2014 Survey Area Data: Soil Survey Area:

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 8, 2010—Sep 4,

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

Severely Eroded Spot

Ŵ

Slide or Slip Sodic Spot

4 0

Sinkhole

Perennial Water Rock Outcrop Saline Spot Sandy Spot

Map Unit Legend

	Clackamas County A	rea, Oregon (OR610)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8B	Bornstedt silt loam, 0 to 8 percent slopes	10.2	100.0%
Totals for Area of Interest		10.2	100.0%

Physical Soil Properties

This table shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at 1/3- or 1/10-bar (33kPa or 10kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute linear extensibility, shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates in the table are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity (Ksat) is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at 1/3- or 1/10-bar tension (33kPa or 10kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. The amount and type of clay minerals in the soil influence volume change.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3, shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In this table, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. The content of organic matter in a soil can be maintained by returning crop residue to the soil.

Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in the table as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and Ksat. Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

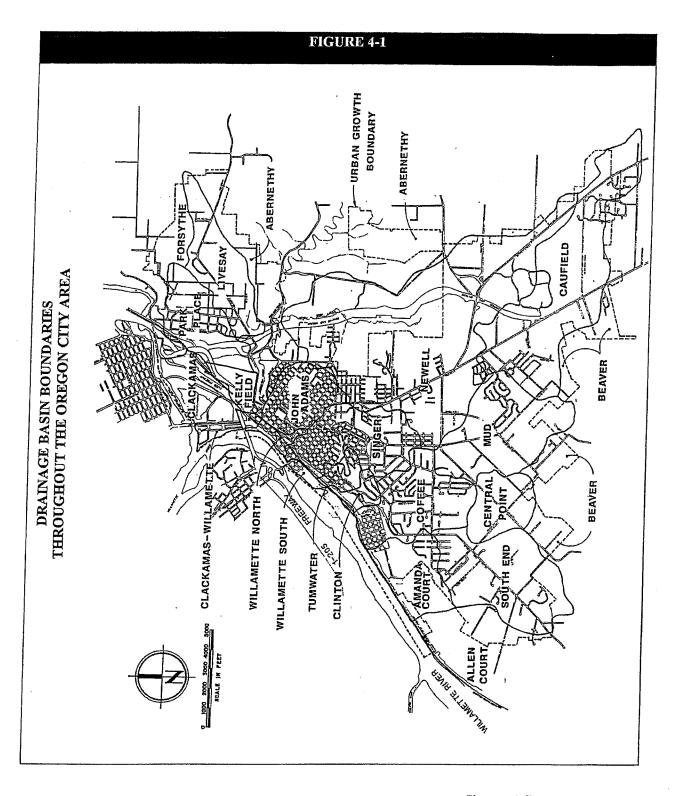
Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook."

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Reference:


United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov)

Report—Physical Soil Properties

				-	hysical So	Physical Soil Properties-Clackamas County Area, Oregon	ckamas Coun	ty Area, Oregon						
Map symbol Depth and soil name	Depth	Sand	Silt	Clay	Moist bulk density	Saturated hydraulic conductivity	Available water capacity	Linear extensibility	Organic matter	田寺	Erosion factors		Wind	Wind
						•				₹	3	F	group	index
	ΙI	Pct	Pct	Pct	g/cc	micro m/sec	ul/ul	Pod	1		:	†		
8B—Bornstedt								3	2					
silt loam, 0 to			_											
8 percent														
slopes														
Bornstedt	0													
1000000	9	ה ה	-/9-	20-24-27	1.30-1.50	20-24- 27 1.30-1.50 4.00-14.00	0.15-0.17	0.0-2 9	30.40	1,0	Γ	T		
	8-33	-7-	c ₃	01 04 07			- 1		0.5		ķ.	<u>۔</u> ٥	٥	48
	3		-02-	cs -15-72	1.40-1.60	27-31-35 1.40-1.60 4.00-14.00	0.13-0.17	0.0-2.9	10-30	27	7.0			
	33-71	-7-	48	70 45 50	4 00 4				200		,ç.			
			.	200	UC. T-02.1	1.30-1.50 0.42-1.40	0.12-0.15	0.0-2.9	0.5.1.0	32	5			
													•	

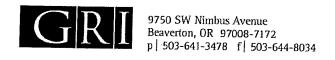
Data Source Information

Soil Survey Area: Clackamas County Area, Oregon Survey Area Data: Version 9, Sep 19, 2014

Table 4-3 MODIFIED CURVE NUMBERS

SCS Western Washington Runoff Curve Numbers
Runoff curve numbers for selected agricultural, suburban, and urban land use for
Type 1A rainfall distribution, 24-hour storm duration. (Published by SCS in 1982)

Cultivated land		and the state of t	n D H 2 H E	ubys	Com	1704)
Cultivated land		100	****			
Cultivated land	LAN	DUSE DESCRIPTION				*****
Cultivated land Winter Condition				SOIL	GROI	P
Mountain Open Areas: Low growing brush and grassland. 74 82 89 92 Meadow or pasture: 65 78 85 89 Wood or forest land: Undisturbed 42 64 76 81 Established second growth or brush 55 72 81 86 Orchard: With over crop 81 88 92 94 Open spaces, lawns, parks, golf courses, cemeteries, landscaping Good Condition: Grass cover on >=75% of area 68 80 86 90 Fair Condition: Grass cover on 50-75% of area 77 85 90 92 Gravel Roads and Parking Lots: 76 85 89 91 Dirt Roads and Parking Lots: 72 82 87 89 Impervious surfaces, pavement, roofs, etc. 98 98 98 98 98 Open water bodies: Lakes, wetlands, ponds, etc. 100 100 100 100 Single Family Residential 3: 15 1.5 1.5 1.5 1.5 <t< td=""><td></td><td></td><td>A</td><td>В</td><td>C</td><td>D</td></t<>			A	В	C	D
Meadow or pasture:		Winter Condition	86	91	94	95
Wood or forest land: Undisturbed Established second growth² 48 68 78 83 70 70 81 86 86 78 83 86 87 88 87 88 87 88 87 88 88 88 88 89 94 88 88	Mountain Open Areas:	Low growing brush and grassland.	74	82	89	92
Established second growth			65	78	85	89
Established second growth			42	64	76	81
Young second growth or brush 55 72 81 86			48	68	78	_
Orchard: With over crop 81 88 92 94 Open spaces, lawns, parks, golf courses, cemeteries, landscaping 68 80 86 90 Fair Condition: Grass cover on 50-75% of area 77 85 90 92 Gravel Roads and Parking Lots: 76 85 89 91 Dirt Roads and Parking Lots: 72 82 87 89 Impervious surfaces, pavement, roofs, etc. 98		Young second growth or brush	55	72	·	
Open spaces, lawns, parks, golf courses, cemeteries, landscaping Good Condition: Grass cover on >=75% of area Fair Condition: Grass cover on 50-75% of area Fair Condition: Fair Condition: Grass cover on 50-75% of area Fair Condition: Fa				88	 	
Fair Condition: Grass cover on 50-75% of area 77 85 90 92	Open spaces, lawns, parks,	golf courses, cemeteries, landscaping	1			
Gravel Roads and Parking Lots: 76 85 89 91			68	80	86	90
Gravel Roads and Parking Lots: 76 85 89 91	Fair Condition:	Grass cover on 50-75% of area	77		90	92
Dirt Roads and Parking Lots: 72 82 87 89 Impervious surfaces, pavement, roofs, etc. 98 98 98 98 98 Open water bodies: Lakes, wetlands, ponds, etc. 100 100 100 100 Single Family Residential 3: Dwelling unit/gross acre % Impervious 4 1.0 DU/GA 15	Gravel Roads and Parking I	Lots;			89	
Impervious surfaces, pavement, roofs, etc. Open water bodies: Lakes, wetlands, ponds, etc. Individual 100 100 100 100 100 Single Family Residential 3: Dwelling unit/gross acre 1.0 DU/GA 1.5 DU/GA 2.0 DU/GA 2.5 DU/GA 3.0 DU/GA 3.0 DU/GA 3.5 DU/GA 3.5 DU/GA 4.0 DU/GA 4.5 DU/GA 4.5 DU/GA 5.0 D	Dirt Roads and Parking Lot	s:				
Open water bodies: Lakes, wetlands, ponds, etc. 100 100 100 100 100 Single Family Residential 3: Dwelling unit/gross acre	Impervious surfaces, pavem	ent, roofs, etc.		98		
Single Family Residential 3: Dwelling unit/gross acre 1.0 DU/GA 1.5 DU/GA 2.0 DU/GA 2.5 DU/GA 3.0 DU/GA 3.5 DU/GA 4.0 DU/GA 4.5 DU/GA 5.0 DU/GA 5.0 DU/GA 6.0 DU/GA 7.0 DU/GA Planned Unit Developments, condominiums, apartments, commercial businesses & Must be computed Missing Mineryious Min			·	100	100	
1.0 DU/GA 1.5 DU/GA 2.0 DU/GA 2.0 DU/GA 2.5 DU/GA 3.0 DU/GA 3.0 DU/GA 3.5 DU/GA 3.5 DU/GA 4.0 DU/GA 4.5 DU/GA 4.5 DU/GA 5.0 DU/GA 5.5 DU/GA 6.0 DU/GA 6.0 DU/GA 7.0 DU/GA Planned Unit Developments, commercial businesses & Must be computed 1.0 DU/GA 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	Single Family Residential 3:					
1.0 DU/GA 1.5 DU/GA 2.0 DU/GA 2.0 DU/GA 2.5 DU/GA 3.0 DU/GA 3.5 DU/GA 3.5 DU/GA 3.5 DU/GA 4.0 DU/GA 4.5 DU/GA 4.5 DU/GA 5.0 DU/GA 5.5 DU/GA 6.0 DU/GA 7.0 DU/GA Planned Unit Developments, condominiums, apartments, commercial businesses & Must be computed 1.5 DU/GA 2.6 Select a separate curve number for pervious and impervious portions of the site or basin. Select a separate curve number for pervious and impervious portions of the site or basin.	Dwelling unit/gross acre	% Impervious ⁴				ł
2.0 DU/GA 2.5 DU/GA 3.0 DU/GA 3.0 DU/GA 3.5 DU/GA 3.5 DU/GA 4.0 DU/GA 4.5 DU/GA 5.0 DU/GA 5.0 DU/GA 5.5 DU/GA 6.0 DU/GA 6.5 DU/GA 7.0 DU/GA 7.0 DU/GA Planned Unit Developments, commercial businesses & Must be computed Select a separate curve number for pervious and impervious portions of the site or basin. Select a separate curve number for pervious and impervious portions of the site or basin.	1.0 DU/GA		ļ			I
2.5 DU/GA 3.0 DU/GA 3.0 DU/GA 3.5 DU/GA 3.5 DU/GA 3.6 DU/GA 4.0 DU/GA 4.5 DU/GA 4.5 DU/GA 5.0 DU/GA 5.0 DU/GA 6.0 DU/GA 6.0 DU/GA 7.0 DU/GA 7.0 DU/GA Planned Unit Developments, condominiums, apartments, commercial businesses & Must be computed Select a separate curve number for pervious and impervious portions of the site or basin. Select a separate curve number for pervious and impervious and impervious and impervious portions of the	1.5 DU/GA	20				
3.0 DU/GA 3.5 DU/GA 3.5 DU/GA 3.6 DU/GA 3.7 DU/GA 3.8 mumber for pervious and impervious portions of the site or basin. 3.0 DU/GA 4.0 DU/GA 4.5 DU/GA 4.5 DU/GA 5.5 DU/GA 5.5 DU/GA 6.0 DU/GA 5.5 DU/GA 6.5 DU/GA 7.0 DU/GA 5.6 Planned Unit Developments, condominiums, apartments, commercial businesses & Must be computed Select a separate curve number for pervious and impervious portions of the impervious portions of the	2.0 DU/GA	25		*		ı
3.5 DU/GA 38 4.0 DU/GA 4.5 DU/GA 4.5 DU/GA 5.0 DU/GA 5.5 DU/GA 6.0 DU/GA 6.5 DU/GA 7.0 DU/GA Planned Unit Developments, condominiums, apartments, commercial businesses & Must be computed 3.5 DU/GA 38 number for pervious and impervious of the site or basin. 8.6 DU/GA 50 8.7 DU/GA 50 8.7 Select a separate curve number for pervious and impervious portions of the dispersion of the site or basin.		30				- 1
3.5 DU/GA 4.0 DU/GA 4.5 DU/GA 4.5 DU/GA 5.0 DU/GA 5.5 DU/GA 6.0 DU/GA 6.5 DU/GA 7.0 DU/GA Planned Unit Developments, condominiums, apartments, commercial businesses & Must be computed number for pervious and impervious and impervious portions of the site or basin. Select a separate curve number for pervious and impervious and impervious portions of the	3.0 DU/GA	34	Select a	separat	e curve	1
4.0 DU/GA 4.5 DU/GA 4.5 DU/GA 5.0 DU/GA 5.5 DU/GA 6.0 DU/GA 6.5 DU/GA 7.0 DU/GA 56 Planned Unit Developments, condominiums, apartments, commercial businesses & Must be computed impervious portions of the site or basin. impervious portions of the site or basin. Select a separate curve number for pervious and impervious portions of the site or basin.	3.5 DU/GA	38				d
4.5 DU/GA 46 5.0 DU/GA 48 5.5 DU/GA 50 6.0 DU/GA 52 6.5 DU/GA 54 7.0 DU/GA 56 Planned Unit Developments, % impervious 4 Select a separate curve number for pervious and impervious portions of the	4.0 DU/GA	42	impervi	ous por	tions of	the
5.5 DU/GA 6.0 DU/GA 52 6.5 DU/GA 54 7.0 DU/GA 56 Planned Unit Developments, % impervious for pervious and commercial businesses & Must be computed Must be computed Select a separate curve number for pervious and impervious portions of the	4.5 DU/GA	46	site or b	asin.		
6.0 DU/GA 52 6.5 DU/GA 54 7.0 DU/GA 56 Planned Unit Developments, % impervious * condominiums, apartments, commercial businesses & Must be computed Must be computed Select a separate curve number for pervious and impervious portions of the	5.0 DU/GA	48				
6.5 DU/GA 54 7.0 DU/GA 56 Planned Unit Developments, % impervious Select a separate curve condominiums, apartments, commercial businesses & Must be computed impervious portions of the	5.5 DU/GA	50				
7.0 DU/GA 56 Planned Unit Developments, % impervious ⁴ condominiums, apartments, number for pervious and commercial businesses & Must be computed impervious portions of the		52				- [
Planned Unit Developments, % impervious ⁴ Select a separate curve condominiums, apartments, number for pervious and commercial businesses & Must be computed impervious portions of the		54				- 1
condominiums, apartments, commercial businesses & Must be computed impervious portions of the						ł
condominiums, apartments, commercial businesses & Must be computed impervious portions of the		% impervious ⁴	Select a	separate	curve	
commercial businesses & Must be computed impervious portions of the	condominiums, apartments,	ļ				1
industrial areas' site or basin.		Must be computed				
	industrial areas		site or b	asin.		


For a more detailed description of agricultural land use curve numbers, refer to National Engineering Handbook, Sec. 4, Hydrology, Chapter 9, August 1972.

² Modified by KCFW, 1995.

³ Assumes roof and driveway runoff is directed into street/storm system.

⁴ The remaining pervious areas (lawn) are considered to be in good condition for these curve numbers.

Table 4-4 MANNING'S COEFFICIENTS/"K" FACTOR	
1 2 LUC L VAIII FOR THE TOTAL COLUMN	69
Smooth surfaces (concrete, asphalt, gravel, or bare hand packed soil)	T),
The state of 10000 Mill Shiftsca (no roughes)	0.01
Cultivated Soll With residue cover (s # 0.20 A/0)	0.05
Cultivated soil with residue cover (c > 0.20.0.10)	0.06 0.17
Short plante grass and lawns	0.17
Dense grasses	0.13
Bermuda grass	0.24
Range (natural)	0.41
Woods or forest with light underbrush	0.13
Woods or forest with dense underbrush	
* Manning values for sheet flow only, from Overton and Meadows 1976 (Sc SCS's TR-55, 1986) "R" Values Used in The Color of	0.60
SCS's TR-55, 1986) "R" Values Used in Travel Time/Time of Concentration Calculations Shallow Concentrated Flore (A.S.)	
Calculations Shallow Concentrated Flow (After the initial 300 ft. of sheet	
	1.
 Forest with heavy ground litter and meadows (n = 0.10) 	k,
$\frac{1}{2}$ $\frac{1}$	3,
5. Fallow or minimum tillage cultivation (n=0.040)	. 5
4. High grass (n=0.035)	8
5. Short grass, pasture, and lawns (n=0.030)	9
o. Thearly bare ground (n=0.025)	11
/. Paved and pravel areas (n=0.010)	13
Unannel flow (intermitten) / At beginning of 22:11 1	27
THE PROPERTY OF THE PROPERTY O	k,
Torested drainage course/ravine with defined change 11. 16. Control	5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
Grassed waterway (n=0.030)	15
Earth-lined waterway (n=0.025)	17
CMP pipe (n=0.024)	20
Concrete pipe (0.012)	21
Other waterways and nine 0.508/n	42
idiner flow (Continuous stream R#0.4)	
Meandering stream with some pools (p=0.040)	k.
. Rock-lined stream (n=0.035)	20
. Grass-lined stream (n=0.030)	23
Other streams, man-made channels and pipe 0.807/n **	27
See Table 6-3 for additional Mannings "n" values for open channels.	

MEMORANDUM

To: Ronald Lee / BBL Architects

Date: October 30, 2014

GRI Project No.: 5635

From: Wesley Spang, PhD, PE, GE

e: Preliminary Design Recommendations

Oregon City School District Transportation Maintenance Facility

Meyers Road and High School Avenue

Oregon City, Oregon

At your request, GRI is completing a geotechnical investigation for the Oregon City School District transportation maintenance facility in Oregon City. Our field investigation was recently completed, and we are in the process of completing the laboratory testing and engineering analyses for the project. This memorandum provides our preliminary conclusions and recommendations regarding seismic considerations and foundation support.

Project Description

We understand the project will consist of grading the site in preparation for construction of a new transportation/maintenance facility. The structure will be two stories tall and include storage, offices, and a bus maintenance area on the lower floor, and a partial second-story mezzanine with offices. A staff parking lot will be constructed in the southern portion of the property; the western half of the site will be used for bus parking.

Field Investigation

Our field investigation consisted of four borings drilled with a trailer-mounted drill rig and five test pits excavated with a track-mounted backhoe. The borings were advanced to a maximum depth of 21.5 ft, and the test pits were excavated to a maximum depth of 10 ft. Soil conditions disclosed by the borings and test pits generally consist of stiff silt that becomes more stiff with depth. Highly weathered basalt, consisting of very stiff to hard silt with gravel-size pieces of weathered basalt, was encountered at depths of 5 to 10 ft and is present to the maximum depth of exploration.

Preliminary Conclusions and Recommendations

Seismic Considerations. Based on our review of the 2012 International Building Code (IBC) and 2014 Oregon Structural Specialty Code, which incorporates recommendations from ASCE 7-10, Minimum Design Loads for Building and Other Structures, and the results of our subsurface explorations, we recommend using Site Class D to evaluate the seismic design of the structure. The maximum horizontal direction spectral response accelerations were obtained from the USGS Seismic Design Maps for the coordinates of 45.32° N latitude and 122.57° W longitude. The Ss and S1 values identified for the site are 0.89 and 0.38 g, respectively. These bedrock spectral ordinates are adjusted for Site Class with the shortand long-period site coefficients, Fa and Fv, based on subsurface conditions or with a site-specific response

analysis. The short- and long-period site coefficients, F_a and F_v , are 1.14 and 1.63, respectively, for Site Class D. The design-level response spectrum is calculated as two-thirds of the Site Class-adjusted Risk-Targeted Maximum Considered Earthquake (MCE_R) level spectrum.

Based on the results of our preliminary analyses, the cyclic softening potential at the site is considered low for both crustal earthquake and Cascadia Subduction Zone earthquake. The potential for earthquake-induced ground rupture, landslides, liquefaction, and subsidence is low, and the potential for damage by tsunami and/or seiche at the site is absent.

Foundation Support. Discussions with Andrew Leichty of Miller Consulting Engineers, the project structural engineer, indicate the maximum column and wall load will be about 80 kips and 8 kips/ft, respectively. In our opinion, foundation support for the building can be provided by conventional column-type and continuous wall footings founded in the underlying firm, native soils and designed using an allowable bearing value of up to 2,500 psf. This value applies to the total of dead load and/or frequently applied live loads and can be increased by one-half for the total of all loads; dead, live, and wind or seismic.

We recommend establishing all footings in firm, undisturbed native soil or compacted structural fill at a minimum depth of 1.5 ft below the lowest adjacent finished grade. The footing width should not be less than 18 in. for wall footings and 24 in. for column footings. Excavations for all foundations should be made with a smooth-edge bucket, and all footing excavations should be observed by a qualified geotechnical engineer. Soft or otherwise unsuitable material encountered at foundation subgrade level should be overexcavated and backfilled with granular structural fill.

We estimate the total settlement of continuous wall and column footings will be less than 1 in. for footings supporting the loads referenced above. Differential settlement between adjacent comparably loaded footings should be less than half the total settlement.

Limitations

The preliminary information provided in this memorandum is not intended for final design of the project. Additional details regarding site conditions and recommendations for design and construction of the proposed improvements will be provided in our forthcoming geotechnical report.

Submitted for GRI,

A. Wesley Spang, PhD, PE, GE Principal

Renews 6/2016

18281

This document has been submitted electronically.

